BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 21702025)

  • 1. Inhibition of enzymatic hydrolysis by residual lignins from softwood--study of enzyme binding and inactivation on lignin-rich surface.
    Rahikainen J; Mikander S; Marjamaa K; Tamminen T; Lappas A; Viikari L; Kruus K
    Biotechnol Bioeng; 2011 Dec; 108(12):2823-34. PubMed ID: 21702025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.
    Marjamaa K; Toth K; Bromann PA; Szakacs G; Kruus K
    Enzyme Microb Technol; 2013 May; 52(6-7):358-69. PubMed ID: 23608505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood.
    Palonen H; Viikari L
    Biotechnol Bioeng; 2004 Jun; 86(5):550-7. PubMed ID: 15129438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.
    Várnai A; Viikari L; Marjamaa K; Siika-aho M
    Bioresour Technol; 2011 Jan; 102(2):1220-7. PubMed ID: 20736135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover.
    Pribowo A; Arantes V; Saddler JN
    Enzyme Microb Technol; 2012 Mar; 50(3):195-203. PubMed ID: 22305175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin.
    Palonen H; Tjerneld F; Zacchi G; Tenkanen M
    J Biotechnol; 2004 Jan; 107(1):65-72. PubMed ID: 14687972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption.
    Heiss-Blanquet S; Zheng D; Lopes Ferreira N; Lapierre C; Baumberger S
    Bioresour Technol; 2011 May; 102(10):5938-46. PubMed ID: 21450460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose.
    Nakagame S; Chandra RP; Kadla JF; Saddler JN
    Bioresour Technol; 2011 Mar; 102(6):4507-17. PubMed ID: 21256740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility.
    Kumar L; Arantes V; Chandra R; Saddler J
    Bioresour Technol; 2012 Jan; 103(1):201-8. PubMed ID: 22047660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of saccharification efficacy in the cellulase system of the brown rot fungus Gloeophyllum trabeum.
    Tewalt J; Schilling J
    Appl Microbiol Biotechnol; 2010 May; 86(6):1785-93. PubMed ID: 20177887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock.
    Tu M; Zhang X; Paice M; MacFarlane P; Saddler JN
    Bioresour Technol; 2009 Dec; 100(24):6407-15. PubMed ID: 19632826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations.
    Berlin A; Balakshin M; Gilkes N; Kadla J; Maximenko V; Kubo S; Saddler J
    J Biotechnol; 2006 Sep; 125(2):198-209. PubMed ID: 16621087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases.
    Zhang J; Tang M; Viikari L
    Bioresour Technol; 2012 Oct; 121():8-12. PubMed ID: 22858461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(5):1130-7. PubMed ID: 17718502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignin-derived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics.
    Kellock M; Rahikainen J; Marjamaa K; Kruus K
    Bioresour Technol; 2017 May; 232():183-191. PubMed ID: 28231536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding.
    Rahikainen JL; Evans JD; Mikander S; Kalliola A; Puranen T; Tamminen T; Marjamaa K; Kruus K
    Enzyme Microb Technol; 2013 Oct; 53(5):315-21. PubMed ID: 24034430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce. Hydrolytic potential of cellulases on different substrates.
    Szengyel Z; Zacchi G; Varga A; Réczey K
    Appl Biochem Biotechnol; 2000; 84-86():679-91. PubMed ID: 10849827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin.
    Nakagame S; Chandra RP; Kadla JF; Saddler JN
    Biotechnol Bioeng; 2011 Mar; 108(3):538-48. PubMed ID: 21246506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride.
    Kovács K; Szakacs G; Zacchi G
    Bioresour Technol; 2009 Feb; 100(3):1350-7. PubMed ID: 18793835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.