These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21702027)

  • 1. Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors.
    Cavka A; Alriksson B; Ahnlund M; Jönsson LJ
    Biotechnol Bioeng; 2011 Nov; 108(11):2592-9. PubMed ID: 21702027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents.
    Alriksson B; Cavka A; Jönsson LJ
    Bioresour Technol; 2011 Jan; 102(2):1254-63. PubMed ID: 20822900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detoxification of lignocellulosic hydrolysates using sodium borohydride.
    Cavka A; Jönsson LJ
    Bioresour Technol; 2013 May; 136():368-76. PubMed ID: 23567704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-liquid extraction of fermentation inhibiting compounds in lignocellulose hydrolysate.
    Zautsen RR; Maugeri-Filho F; Vaz-Rossell CE; Straathof AJ; van der Wielen LA; de Bont JA
    Biotechnol Bioeng; 2009 Apr; 102(5):1354-60. PubMed ID: 19062184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency.
    Carter B; Squillace P; Gilcrease PC; Menkhaus TJ
    Biotechnol Bioeng; 2011 Sep; 108(9):2053-60. PubMed ID: 21455936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae.
    Kim SK; Park DH; Song SH; Wee YJ; Jeong GT
    Bioprocess Biosyst Eng; 2013 Jun; 36(6):659-66. PubMed ID: 23358811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detoxification of lignocellulose hydrolysates with ion-exchange resins.
    Nilvebrant NO; Reimann A; Larsson S; Jönsson LJ
    Appl Biochem Biotechnol; 2001; 91-93():35-49. PubMed ID: 11963864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol fermentation of various pretreated and hydrolyzed substrates at low initial pH.
    Kádár Z; Maltha SF; Szengyel Z; Réczey K; de Laat W
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):847-58. PubMed ID: 18478439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review].
    Li H; Zhang X; Shen Y; Dong Y; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1321-8. PubMed ID: 19938474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate.
    Modig T; Almeida JR; Gorwa-Grauslund MF; Lidén G
    Biotechnol Bioeng; 2008 Jun; 100(3):423-9. PubMed ID: 18438882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ammonium hydroxide detoxification of spruce acid hydrolysates.
    Alriksson B; Horváth IS; Sjöde A; Nilvebrant NO; Jönsson LJ
    Appl Biochem Biotechnol; 2005; 121-124():911-22. PubMed ID: 15930570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Small Aliphatic Aldehydes in Pretreated Lignocellulosic Feedstocks and Evaluation of Their Inhibitory Effects on Yeast.
    Cavka A; Stagge S; Jönsson LJ
    J Agric Food Chem; 2015 Nov; 63(44):9747-54. PubMed ID: 26528761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment with lignin residue: a novel method for detoxification of lignocellulose hydrolysates.
    Björklund L; Larsson S; Jönsson LJ; Reimann E; Nilvebrant NO
    Appl Biochem Biotechnol; 2002; 98-100():563-75. PubMed ID: 12018282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase.
    Larsson S; Cassland P; Jönsson LJ
    Appl Environ Microbiol; 2001 Mar; 67(3):1163-70. PubMed ID: 11229906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale.
    Arshad M; Khan ZM; Khalil-ur-Rehman ; Shah FA; Rajoka MI
    Lett Appl Microbiol; 2008 Nov; 47(5):410-4. PubMed ID: 19146530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates.
    Nichols NN; Dien BS; Guisado GM; López MJ
    Appl Biochem Biotechnol; 2005; 121-124():379-90. PubMed ID: 15917615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae.
    Ding MZ; Wang X; Yang Y; Yuan YJ
    OMICS; 2011 Oct; 15(10):647-53. PubMed ID: 21978393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors.
    Persson P; Larsson S; Jönsson LJ; Nilvebrant NO; Sivik B; Munteanu F; Thörneby L; Gorton L
    Biotechnol Bioeng; 2002 Sep; 79(6):694-700. PubMed ID: 12209817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.