These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21702051)

  • 21. Cake shrinkage during freeze drying: a combined experimental and theoretical study.
    Rambhatla S; Obert JP; Luthra S; Bhugra C; Pikal MJ
    Pharm Dev Technol; 2005; 10(1):33-40. PubMed ID: 15776811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle.
    Bosca S; Barresi AA; Fissore D
    Int J Pharm; 2013 Jul; 451(1-2):23-33. PubMed ID: 23624086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of freeze-drying sublimation rates using a freeze-drying microbalance technique.
    Xiang J; Hey JM; Liedtke V; Wang DQ
    Int J Pharm; 2004 Jul; 279(1-2):95-105. PubMed ID: 15234798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global Sensitivity Analysis as Good Modelling Practices tool for the identification of the most influential process parameters of the primary drying step during freeze-drying.
    Van Bockstal PJ; Mortier STFC; Corver J; Nopens I; Gernaey KV; De Beer T
    Eur J Pharm Biopharm; 2018 Feb; 123():108-116. PubMed ID: 29258911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A step forward towards the development of stable freeze-dried liposomes: a quality by design approach (QbD).
    Sylvester B; Porfire A; Achim M; Rus L; Tomuţă I
    Drug Dev Ind Pharm; 2018 Mar; 44(3):385-397. PubMed ID: 29098869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.
    Goshima H; Do G; Nakagawa K
    J Pharm Sci; 2016 Jun; 105(6):1920-1933. PubMed ID: 27238489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-line optimization and control of an industrial freeze-drying process for pharmaceuticals.
    Pisano R; Fissore D; Velardi SA; Barresi AA
    J Pharm Sci; 2010 Nov; 99(11):4691-709. PubMed ID: 20845466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of soft sensors to monitor a pharmaceuticals freeze-drying process in vials.
    Bosca S; Barresi AA; Fissore D
    Pharm Dev Technol; 2014 Mar; 19(2):148-59. PubMed ID: 23336717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity Study to Assess the Robustness of Primary Drying Process in Pharmaceutical Lyophilization.
    Adhikari N; Zhu T; Jameel F; Tharp T; Shang S; Alexeenko A
    J Pharm Sci; 2020 Feb; 109(2):1043-1049. PubMed ID: 31606541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LyoPRONTO: an Open-Source Lyophilization Process Optimization Tool.
    Shivkumar G; Kazarin PS; Strongrich AD; Alexeenko AA
    AAPS PharmSciTech; 2019 Oct; 20(8):328. PubMed ID: 31673810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of dryer load on freeze drying process design.
    Patel SM; Jameel F; Pikal MJ
    J Pharm Sci; 2010 Oct; 99(10):4363-79. PubMed ID: 20737639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the Design of a Fuzzy Logic-Based Control System for Freeze-Drying Processes.
    Fissore D
    J Pharm Sci; 2016 Dec; 105(12):3562-3572. PubMed ID: 27692619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling the primary drying step for the determination of the optimal dynamic heating pad temperature in a continuous pharmaceutical freeze-drying process for unit doses.
    De Meyer L; Lammens J; Mortier STFC; Vanbillemont B; Van Bockstal PJ; Corver J; Nopens I; Vervaet C; De Beer T
    Int J Pharm; 2017 Oct; 532(1):185-193. PubMed ID: 28887221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel approach to sterile pharmaceutical freeze-drying.
    Cherry CL; Millward H; Cooper R; Landon J
    Pharm Dev Technol; 2014 Feb; 19(1):73-81. PubMed ID: 23323966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quality by design: optimization of a freeze-drying cycle via design space in case of heterogeneous drying behavior and influence of the freezing protocol.
    Pisano R; Fissore D; Barresi AA; Brayard P; Chouvenc P; Woinet B
    Pharm Dev Technol; 2013 Feb; 18(1):280-95. PubMed ID: 23078169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of process analytical technology for monitoring freeze-drying of an amorphous protein formulation: use of complementary tools for real-time product temperature measurements and endpoint detection.
    Schneid SC; Johnson RE; Lewis LM; Stärtzel P; Gieseler H
    J Pharm Sci; 2015 May; 104(5):1741-9. PubMed ID: 25691354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model-Based Optimisation and Control Strategy for the Primary Drying Phase of a Lyophilisation Process.
    Vanbillemont B; Nicolaï N; Leys L; De Beer T
    Pharmaceutics; 2020 Feb; 12(2):. PubMed ID: 32093181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent.
    Colandene JD; Maldonado LM; Creagh AT; Vrettos JS; Goad KG; Spitznagel TM
    J Pharm Sci; 2007 Jun; 96(6):1598-608. PubMed ID: 17117409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Freeze-drying of tert-butyl alcohol/water cosolvent systems: effects of formulation and process variables on residual solvents.
    Wittaya-Areekul S; Nail SL
    J Pharm Sci; 1998 Apr; 87(4):491-5. PubMed ID: 9548903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.