These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 21702433)

  • 1. Understanding ligninase-mediated reactions of endocrine disrupting chemicals in water: reaction rates and quantitative structure-activity relationships.
    Mao L; Colosi LM; Gao S; Huang Q
    Environ Sci Technol; 2011 Jul; 45(14):5966-72. PubMed ID: 21702433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of 17beta-estradiol mediated by lignin peroxidase: the role of veratryl alcohol.
    Mao L; Lu J; Gao S; Huang Q
    Arch Environ Contam Toxicol; 2010 Jul; 59(1):13-9. PubMed ID: 20035325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligninase-mediated removal of natural and synthetic estrogens from water: II. Reactions of 17beta-estradiol.
    Mao L; Lu J; Habteselassie M; Luo Q; Gao S; Cabrera M; Huang Q
    Environ Sci Technol; 2010 Apr; 44(7):2599-604. PubMed ID: 20230031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peroxidase-mediated removal of endocrine disrupting compound mixtures from water.
    Zheng W; Colosi LM
    Chemosphere; 2011 Oct; 85(4):553-7. PubMed ID: 21741675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligninase-mediated removal of 17beta-estradiol from water in the presence of natural organic matter: efficiency and pathways.
    Mao L; Huang Q; Luo Q; Lu J; Yang X; Gao S
    Chemosphere; 2010 Jun; 80(4):469-73. PubMed ID: 20416920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure-activity relationship based quantification of the impacts of enzyme-substrate binding on rates of peroxidase-mediated reactions of estrogenic phenolic chemicals.
    Colosi LM; Huang Q; Weber WJ
    J Am Chem Soc; 2006 Mar; 128(12):4041-7. PubMed ID: 16551113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligninase-mediated removal of natural and synthetic estrogens from water: I. Reaction behaviors.
    Mao L; Huang Q; Lu J; Gao S
    Environ Sci Technol; 2009 Jan; 43(2):374-9. PubMed ID: 19238967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and ligninolytic system production dynamics of the Phanerochaete chrysosporium fungus A modelling and optimization approach.
    Hormiga JA; Vera J; Frías I; Torres Darias NV
    J Biotechnol; 2008 Oct; 137(1-4):50-8. PubMed ID: 18694789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624.
    Hirai H; Sugiura M; Kawai S; Nishida T
    FEMS Microbiol Lett; 2005 May; 246(1):19-24. PubMed ID: 15869957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irreversible oxidation of ferricytochrome c by lignin peroxidase.
    Sheng D; Gold MH
    Biochemistry; 1998 Feb; 37(7):2029-36. PubMed ID: 9485329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic degradation of endocrine-disrupting chemicals in aquatic plants and relations to biological Fenton reaction.
    Reis AR; Sakakibara Y
    Water Sci Technol; 2012; 66(4):775-82. PubMed ID: 22766866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants.
    Reis AR; Tabei K; Sakakibara Y
    J Hazard Mater; 2014 Jan; 265():79-88. PubMed ID: 24333944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of oxalate in lignin peroxidase-catalyzed reduction: protection from compound III accumulation.
    Goodwin DC; Barr DP; Aust SD; Grover TA
    Arch Biochem Biophys; 1994 Dec; 315(2):267-72. PubMed ID: 7986067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium--a white rot fungus.
    Wen X; Jia Y; Li J
    Chemosphere; 2009 May; 75(8):1003-7. PubMed ID: 19232429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment - physical means, biodegradation, and chemical advanced oxidation: a review.
    Liu ZH; Kanjo Y; Mizutani S
    Sci Total Environ; 2009 Jan; 407(2):731-48. PubMed ID: 18992918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective removal of endocrine-disrupting compounds by lignin peroxidase from the white-rot fungus Phanerochaete sordida YK-624.
    Wang J; Majima N; Hirai H; Kawagishi H
    Curr Microbiol; 2012 Mar; 64(3):300-3. PubMed ID: 22203416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of the veratryl alcohol cation radical by lignin peroxidase.
    Khindaria A; Yamazaki I; Aust SD
    Biochemistry; 1996 May; 35(20):6418-24. PubMed ID: 8639588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism.
    Blodig W; Smith AT; Doyle WA; Piontek K
    J Mol Biol; 2001 Jan; 305(4):851-61. PubMed ID: 11162097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The aqueous degradation of bisphenol A and steroid estrogens by ferrate.
    Li C; Li XZ; Graham N; Gao NY
    Water Res; 2008 Jan; 42(1-2):109-20. PubMed ID: 17681362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of endocrine disrupting compounds in harbour seawater and sediments.
    Robinson BJ; Hellou J
    Sci Total Environ; 2009 Oct; 407(21):5713-8. PubMed ID: 19665171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.