BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1268 related articles for article (PubMed ID: 21702456)

  • 1. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States.
    Stepan AF; Walker DP; Bauman J; Price DA; Baillie TA; Kalgutkar AS; Aleo MD
    Chem Res Toxicol; 2011 Sep; 24(9):1345-410. PubMed ID: 21702456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
    Meanwell NA
    Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk assessment and mitigation strategies for reactive metabolites in drug discovery and development.
    Thompson RA; Isin EM; Li Y; Weaver R; Weidolf L; Wilson I; Claesson A; Page K; Dolgos H; Kenna JG
    Chem Biol Interact; 2011 Jun; 192(1-2):65-71. PubMed ID: 21074519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting toxicities of reactive metabolite-positive drug candidates.
    Kalgutkar AS; Dalvie D
    Annu Rev Pharmacol Toxicol; 2015; 55():35-54. PubMed ID: 25292426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural alerts, reactive metabolites, and protein covalent binding: how reliable are these attributes as predictors of drug toxicity?
    Kalgutkar AS; Didiuk MT
    Chem Biodivers; 2009 Nov; 6(11):2115-37. PubMed ID: 19937848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Handling reactive metabolite positives in drug discovery: What has retrospective structure-toxicity analyses taught us?
    Kalgutkar AS
    Chem Biol Interact; 2011 Jun; 192(1-2):46-55. PubMed ID: 20833160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Should the incorporation of structural alerts be restricted in drug design? An analysis of structure-toxicity trends with aniline-based drugs.
    Kalgutkar AS
    Curr Med Chem; 2015; 22(4):438-64. PubMed ID: 25388012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of the potential for drug-induced toxicity based on (35)S-labeled glutathione adduct formation and daily dose.
    Miyaji Y; Makino C; Kurihara A; Suzuki W; Okazaki O
    Bioanalysis; 2012 Feb; 4(3):263-9. PubMed ID: 22303830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery tactics to mitigate toxicity risks due to reactive metabolite formation with 2-(2-hydroxyaryl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3h)-one derivatives, potent calcium-sensing receptor antagonists and clinical candidate(s) for the treatment of osteoporosis.
    Kalgutkar AS; Griffith DA; Ryder T; Sun H; Miao Z; Bauman JN; Didiuk MT; Frederick KS; Zhao SX; Prakash C; Soglia JR; Bagley SW; Bechle BM; Kelley RM; Dirico K; Zawistoski M; Li J; Oliver R; Guzman-Perez A; Liu KK; Walker DP; Benbow JW; Morris J
    Chem Res Toxicol; 2010 Jun; 23(6):1115-26. PubMed ID: 20507089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical approaches to resolving reactive metabolite liabilities in early discovery.
    Dalvie D; Kalgutkar AS; Chen W
    Drug Metab Rev; 2015 Feb; 47(1):56-70. PubMed ID: 25410913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolites and safety: What are the concerns, and how should we address them?
    Smith DA; Obach RS
    Chem Res Toxicol; 2006 Dec; 19(12):1570-9. PubMed ID: 17173370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Idiosyncratic toxicity: mechanistic insights gained from analysis of prior compounds.
    Waring JF; Anderson MG
    Curr Opin Drug Discov Devel; 2005 Jan; 8(1):59-65. PubMed ID: 15679173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From toxic precursors to safe drugs. Mechanisms and relevance of idiosyncratic drug reactions.
    Petersen KU
    Arzneimittelforschung; 2002; 52(6):423-9. PubMed ID: 12109041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of a new drug's potential to cause idiosyncratic reactions.
    Uetrecht J
    Curr Opin Drug Discov Devel; 2001 Jan; 4(1):55-9. PubMed ID: 11727323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for dealing with reactive intermediates in drug discovery and development.
    Nassar AE; Lopez-Anaya A
    Curr Opin Drug Discov Devel; 2004 Jan; 7(1):126-36. PubMed ID: 14982156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolites in safety testing (MIST): considerations of mechanisms of toxicity with dose, abundance, and duration of treatment.
    Smith DA; Obach RS
    Chem Res Toxicol; 2009 Feb; 22(2):267-79. PubMed ID: 19166333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of leukocyte-generated reactive metabolites in the pathogenesis of idiosyncratic drug reactions.
    Uetrecht JP
    Drug Metab Rev; 1992; 24(3):299-366. PubMed ID: 1628536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated reactive metabolite evaluation approach to assess and reduce safety risk during drug discovery and development.
    Reese M; Sakatis M; Ambroso J; Harrell A; Yang E; Chen L; Taylor M; Baines I; Zhu L; Ayrton A; Clarke S
    Chem Biol Interact; 2011 Jun; 192(1-2):60-4. PubMed ID: 20970409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.