These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 21702633)

  • 1. Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities.
    Calic M; Gallo P; Felici M; Atlasov KA; Dwir B; Rudra A; Biasiol G; Sorba L; Tarel G; Savona V; Kapon E
    Phys Rev Lett; 2011 Jun; 106(22):227402. PubMed ID: 21702633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic crystal nanocavity laser with a single quantum dot gain.
    Nomura M; Kumagai N; Iwamoto S; Ota Y; Arakawa Y
    Opt Express; 2009 Aug; 17(18):15975-82. PubMed ID: 19724596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.
    Vasudev P; Jiang JH; John S
    Opt Express; 2016 Jun; 24(13):14010-35. PubMed ID: 27410564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamically controlling the emission of single excitons in photonic crystal cavities.
    Pagliano F; Cho Y; Xia T; van Otten F; Johne R; Fiore A
    Nat Commun; 2014 Dec; 5():5786. PubMed ID: 25503405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Dependent Exciton Dynamics in a Single GaAs Quantum Ring and a Quantum Dot.
    Kim H; Kim JS; Song JD
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities.
    Laucht A; Hauke N; Villas-Bôas JM; Hofbauer F; Böhm G; Kaniber M; Finley JJ
    Phys Rev Lett; 2009 Aug; 103(8):087405. PubMed ID: 19792763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison between experiment and theory on few-quantum-dot nanolasing in a photonic-crystal cavity.
    Liu J; Ates S; Lorke M; Mørk J; Lodahl P; Stobbe S
    Opt Express; 2013 Nov; 21(23):28507-12. PubMed ID: 24514362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.
    Khankhoje UK; Kim SH; Richards BC; Hendrickson J; Sweet J; Olitzky JD; Khitrova G; Gibbs HM; Scherer A
    Nanotechnology; 2010 Feb; 21(6):065202. PubMed ID: 20057040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton Dipole-Dipole Interaction in a Single Coupled-Quantum-Dot Structure via Polarized Excitation.
    Kim H; Kim I; Kyhm K; Taylor RA; Kim JS; Song JD; Je KC; Dang LS
    Nano Lett; 2016 Dec; 16(12):7755-7760. PubMed ID: 27960477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved two-pulse excitation of quantum dots coupled to a photonic crystal cavity in the Purcell regime.
    Lee J; Saucer TW; Martin AJ; Millunchick JM; Sih V
    Phys Rev Lett; 2013 Jan; 110(1):013602. PubMed ID: 23383789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanobeam photonic crystal cavity quantum dot laser.
    Gong Y; Ellis B; Shambat G; Sarmiento T; Harris JS; Vuckovic J
    Opt Express; 2010 Apr; 18(9):8781-9. PubMed ID: 20588722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities.
    Surrente A; Felici M; Gallo P; Dwir B; Rudra A; Biasiol G; Sorba L; Kapon E
    Nanotechnology; 2011 Nov; 22(46):465203. PubMed ID: 22032901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon-induced Rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots.
    Ramsay AJ; Godden TM; Boyle SJ; Gauger EM; Nazir A; Lovett BW; Fox AM; Skolnick MS
    Phys Rev Lett; 2010 Oct; 105(17):177402. PubMed ID: 21231078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity.
    Tawara T; Kamada H; Tanabe T; Sogawa T; Okamoto H; Yao P; Pathak PK; Hughes S
    Opt Express; 2010 Feb; 18(3):2719-28. PubMed ID: 20174101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation.
    Quilter JH; Brash AJ; Liu F; Glässl M; Barth AM; Axt VM; Ramsay AJ; Skolnick MS; Fox AM
    Phys Rev Lett; 2015 Apr; 114(13):137401. PubMed ID: 25884136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides.
    Javadi A; Maibom S; Sapienza L; Thyrrestrup H; García PD; Lodahl P
    Opt Express; 2014 Dec; 22(25):30992-1001. PubMed ID: 25607048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs.
    Roy-Choudhury K; Hughes S
    Opt Lett; 2015 Apr; 40(8):1838-41. PubMed ID: 25872087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.