These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 21702908)
1. Global transcriptome response in Lactobacillus sakei during growth on ribose. McLeod A; Snipen L; Naterstad K; Axelsson L BMC Microbiol; 2011 Jun; 11():145. PubMed ID: 21702908 [TBL] [Abstract][Full Text] [Related]
2. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis. McLeod A; Zagorec M; Champomier-Vergès MC; Naterstad K; Axelsson L BMC Microbiol; 2010 Apr; 10():120. PubMed ID: 20412581 [TBL] [Abstract][Full Text] [Related]
3. Lactobacillus oligofermentans glucose, ribose and xylose transcriptomes show higher similarity between glucose and xylose catabolism-induced responses in the early exponential growth phase. Andreevskaya M; Johansson P; Jääskeläinen E; Rämö T; Ritari J; Paulin L; Björkroth J; Auvinen P BMC Genomics; 2016 Aug; 17():539. PubMed ID: 27487841 [TBL] [Abstract][Full Text] [Related]
4. Ribose utilization in Lactobacillus sakei: analysis of the regulation of the rbs operon and putative involvement of a new transporter. Stentz R; Zagorec M J Mol Microbiol Biotechnol; 1999 Aug; 1(1):165-73. PubMed ID: 10941799 [TBL] [Abstract][Full Text] [Related]
5. The pentose moiety of adenosine and inosine is an important energy source for the fermented-meat starter culture Lactobacillus sakei CTC 494. Rimaux T; Vrancken G; Vuylsteke B; De Vuyst L; Leroy F Appl Environ Microbiol; 2011 Sep; 77(18):6539-50. PubMed ID: 21803903 [TBL] [Abstract][Full Text] [Related]
6. Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. Nyquist OL; McLeod A; Brede DA; Snipen L; Aakra Å; Nes IF Mol Genet Genomics; 2011 Apr; 285(4):297-311. PubMed ID: 21369871 [TBL] [Abstract][Full Text] [Related]
7. Catabolism of N-acetylneuraminic acid, a fitness function of the food-borne lactic acid bacterium Lactobacillus sakei, involves two newly characterized proteins. Anba-Mondoloni J; Chaillou S; Zagorec M; Champomier-Vergès MC Appl Environ Microbiol; 2013 Mar; 79(6):2012-8. PubMed ID: 23335758 [TBL] [Abstract][Full Text] [Related]
8. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. van der Voort M; Kuipers OP; Buist G; de Vos WM; Abee T BMC Microbiol; 2008 Apr; 8():62. PubMed ID: 18416820 [TBL] [Abstract][Full Text] [Related]
9. Carbon catabolite control of the metabolic network in Bacillus subtilis. Fujita Y Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299 [TBL] [Abstract][Full Text] [Related]
10. The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Muscariello L; Marasco R; De Felice M; Sacco M Appl Environ Microbiol; 2001 Jul; 67(7):2903-7. PubMed ID: 11425700 [TBL] [Abstract][Full Text] [Related]
11. Identification of Lactobacillus sakei genes induced during meat fermentation and their role in survival and growth. Hüfner E; Markieton T; Chaillou S; Crutz-Le Coq AM; Zagorec M; Hertel C Appl Environ Microbiol; 2007 Apr; 73(8):2522-31. PubMed ID: 17308175 [TBL] [Abstract][Full Text] [Related]
12. Relationships between arginine degradation, pH and survival in Lactobacillus sakei. Champomier Vergès MC; Zuñiga M; Morel-Deville F; Pérez-Martínez G; Zagorec M; Ehrlich SD FEMS Microbiol Lett; 1999 Nov; 180(2):297-304. PubMed ID: 10556725 [TBL] [Abstract][Full Text] [Related]
13. The Product of arcR, the sixth gene of the arc operon of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway. Zúñiga M; Miralles Md Mdel C; Pérez-Martínez G Appl Environ Microbiol; 2002 Dec; 68(12):6051-8. PubMed ID: 12450828 [TBL] [Abstract][Full Text] [Related]
14. Carbon catabolite repression in Lactobacillus pentosus: analysis of the ccpA region. Mahr K; Hillen W; Titgemeyer F Appl Environ Microbiol; 2000 Jan; 66(1):277-83. PubMed ID: 10618236 [TBL] [Abstract][Full Text] [Related]
15. Genomic and metabolic features of Lactobacillus sakei as revealed by its pan-genome and the metatranscriptome of kimchi fermentation. Kim KH; Chun BH; Baek JH; Roh SW; Lee SH; Jeon CO Food Microbiol; 2020 Apr; 86():103341. PubMed ID: 31703875 [TBL] [Abstract][Full Text] [Related]
16. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Darbon E; Servant P; Poncet S; Deutscher J Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549 [TBL] [Abstract][Full Text] [Related]
17. Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Viana R; Monedero V; Dossonnet V; Vadeboncoeur C; Pérez-Martínez G; Deutscher J Mol Microbiol; 2000 May; 36(3):570-84. PubMed ID: 10844647 [TBL] [Abstract][Full Text] [Related]
18. Functional analysis of the role of CcpA in Lactobacillus plantarum grown on fructooligosaccharides or glucose: a transcriptomic perspective. Lu Y; Song S; Tian H; Yu H; Zhao J; Chen C Microb Cell Fact; 2018 Dec; 17(1):201. PubMed ID: 30593274 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome response of Lactobacillus sakei to meat protein environment. Xu HQ; Gao L; Jiang YS; Tian Y; Peng J; Xa QQ; Chen Y J Basic Microbiol; 2015 Apr; 55(4):490-9. PubMed ID: 25384669 [TBL] [Abstract][Full Text] [Related]
20. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis. Tanaka K; Iwasaki K; Morimoto T; Matsuse T; Hasunuma T; Takenaka S; Chumsakul O; Ishikawa S; Ogasawara N; Yoshida K BMC Microbiol; 2015 Feb; 15():43. PubMed ID: 25880922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]