These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 21702908)
21. Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by the environmental pH. Rimaux T; Rivière A; Illeghems K; Weckx S; De Vuyst L; Leroy F Appl Environ Microbiol; 2012 Jul; 78(14):4874-83. PubMed ID: 22544250 [TBL] [Abstract][Full Text] [Related]
22. Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Barrangou R; Azcarate-Peril MA; Duong T; Conners SB; Kelly RM; Klaenhammer TR Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3816-21. PubMed ID: 16505367 [TBL] [Abstract][Full Text] [Related]
23. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis. Hirooka K; Kodoi Y; Satomura T; Fujita Y J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933 [TBL] [Abstract][Full Text] [Related]
25. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor. Romero-Rodríguez A; Rocha D; Ruiz-Villafan B; Tierrafría V; Rodríguez-Sanoja R; Segura-González D; Sánchez S BMC Microbiol; 2016 Apr; 16():77. PubMed ID: 27121083 [TBL] [Abstract][Full Text] [Related]
26. Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei. Goh YJ; Zhang C; Benson AK; Schlegel V; Lee JH; Hutkins RW Appl Environ Microbiol; 2006 Dec; 72(12):7518-30. PubMed ID: 17028235 [TBL] [Abstract][Full Text] [Related]
27. CcpA-Dependent Carbon Catabolite Repression Regulates Fructooligosaccharides Metabolism in Chen C; Lu Y; Wang L; Yu H; Tian H Front Microbiol; 2018; 9():1114. PubMed ID: 29896178 [TBL] [Abstract][Full Text] [Related]
28. CcpA represses the expression of the divergent cit operons of Enterococcus faecalis through multiple cre sites. Suárez CA; Blancato VS; Poncet S; Deutscher J; Magni C BMC Microbiol; 2011 Oct; 11():227. PubMed ID: 21989394 [TBL] [Abstract][Full Text] [Related]
29. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria. Siezen R; Boekhorst J; Muscariello L; Molenaar D; Renckens B; Kleerebezem M BMC Genomics; 2006 May; 7():126. PubMed ID: 16723015 [TBL] [Abstract][Full Text] [Related]
30. Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose. Shiwa Y; Fujiwara H; Numaguchi M; Abdel-Rahman MA; Nabeta K; Kanesaki Y; Tashiro Y; Zendo T; Tanaka N; Fujita N; Yoshikawa H; Sonomoto K; Shimizu-Kadota M PLoS One; 2020; 15(11):e0242070. PubMed ID: 33201910 [TBL] [Abstract][Full Text] [Related]
31. Production of buttery-odor compounds and transcriptome response in Leuconostoc gelidum subsp. gasicomitatum LMG18811T during growth on various carbon sources. Jääskeläinen E; Vesterinen S; Parshintsev J; Johansson P; Riekkola ML; Björkroth J Appl Environ Microbiol; 2015 Mar; 81(6):1902-8. PubMed ID: 25548057 [TBL] [Abstract][Full Text] [Related]
32. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894 [TBL] [Abstract][Full Text] [Related]
33. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
34. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627 [TBL] [Abstract][Full Text] [Related]
36. Comparative genomics of Lactobacillus curvatus enables prediction of traits relating to adaptation and strategies of assertiveness in sausage fermentation. Eisenbach L; Janßen D; Ehrmann MA; Vogel RF Int J Food Microbiol; 2018 Dec; 286():37-47. PubMed ID: 30031987 [TBL] [Abstract][Full Text] [Related]
37. Molecular characterization of CcpA and involvement of this protein in transcriptional regulation of lactate dehydrogenase and pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis. Asanuma N; Yoshii T; Hino T Appl Environ Microbiol; 2004 Sep; 70(9):5244-51. PubMed ID: 15345406 [TBL] [Abstract][Full Text] [Related]
38. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Yoshida S; Okano K; Tanaka T; Ogino C; Kondo A Appl Microbiol Biotechnol; 2011 Oct; 92(1):67-76. PubMed ID: 21643702 [TBL] [Abstract][Full Text] [Related]
39. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089 [TBL] [Abstract][Full Text] [Related]
40. A putative transport protein is involved in citrulline excretion and re-uptake during arginine deiminase pathway activity by Lactobacillus sakei. Rimaux T; Rivière A; Hebert EM; Mozzi F; Weckx S; De Vuyst L; Leroy F Res Microbiol; 2013 Apr; 164(3):216-25. PubMed ID: 23178175 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]