BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21702994)

  • 1. The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes.
    Gran P; Cameron-Smith D
    BMC Physiol; 2011 Jun; 11():10. PubMed ID: 21702994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucine supplementation after mechanical stimulation activates protein synthesis via L-type amino acid transporter 1 in vitro.
    Nakai N; Kawano F; Murakami T; Nakata K; Higashida K
    J Cell Biochem; 2018 Feb; 119(2):2094-2101. PubMed ID: 28856713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient signalling in the regulation of human muscle protein synthesis.
    Fujita S; Dreyer HC; Drummond MJ; Glynn EL; Cadenas JG; Yoshizawa F; Volpi E; Rasmussen BB
    J Physiol; 2007 Jul; 582(Pt 2):813-23. PubMed ID: 17478528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes.
    Salles J; Chanet A; Giraudet C; Patrac V; Pierre P; Jourdan M; Luiking YC; Verlaan S; Migné C; Boirie Y; Walrand S
    Mol Nutr Food Res; 2013 Dec; 57(12):2137-46. PubMed ID: 23929734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulation of amino acid transporter expression induced by L-leucine availability in L6 myotubes is associated with ATF4 signaling through mTORC1-dependent mechanism.
    Luo JQ; Chen DW; Yu B
    Nutrition; 2013 Jan; 29(1):284-90. PubMed ID: 22985970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endotoxin disrupts the leucine-signaling pathway involving phosphorylation of mTOR, 4E-BP1, and S6K1 in skeletal muscle.
    Lang CH; Frost RA
    J Cell Physiol; 2005 Apr; 203(1):144-55. PubMed ID: 15389631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing leucine concentration stimulates mechanistic target of rapamycin signaling and cell growth in C2C12 skeletal muscle cells.
    Areta JL; Hawley JA; Ye JM; Chan MH; Coffey VG
    Nutr Res; 2014 Nov; 34(11):1000-7. PubMed ID: 25439029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TNFalpha mediates sepsis-induced impairment of basal and leucine-stimulated signaling via S6K1 and eIF4E in cardiac muscle.
    Lang CH; Pruznak AM; Frost RA
    J Cell Biochem; 2005 Feb; 94(2):419-31. PubMed ID: 15534870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase.
    Byfield MP; Murray JT; Backer JM
    J Biol Chem; 2005 Sep; 280(38):33076-82. PubMed ID: 16049009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical stretch activates mammalian target of rapamycin and AMP-activated protein kinase pathways in skeletal muscle cells.
    Nakai N; Kawano F; Nakata K
    Mol Cell Biochem; 2015 Aug; 406(1-2):285-92. PubMed ID: 25971373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise.
    Moberg M; Apró W; Ekblom B; van Hall G; Holmberg HC; Blomstrand E
    Am J Physiol Cell Physiol; 2016 Jun; 310(11):C874-84. PubMed ID: 27053525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes.
    Kanazawa T; Taneike I; Akaishi R; Yoshizawa F; Furuya N; Fujimura S; Kadowaki M
    J Biol Chem; 2004 Feb; 279(9):8452-9. PubMed ID: 14610086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes.
    Pham PT; Heydrick SJ; Fox HL; Kimball SR; Jefferson LS; Lynch CJ
    J Cell Biochem; 2000 Sep; 79(3):427-41. PubMed ID: 10972980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effect of sepsis on ability of leucine and IGF-I to stimulate muscle translation initiation.
    Lang CH; Frost RA
    Am J Physiol Endocrinol Metab; 2004 Oct; 287(4):E721-30. PubMed ID: 15186995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated.
    Suryawan A; Orellana RA; Nguyen HV; Jeyapalan AS; Fleming JR; Davis TA
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1597-605. PubMed ID: 17878222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eicosapentaenoic acid abolishes inhibition of insulin-induced mTOR phosphorylation by LPS via PTP1B downregulation in skeletal muscle.
    Wei HK; Deng Z; Jiang SZ; Song TX; Zhou YF; Peng J; Tao YX
    Mol Cell Endocrinol; 2017 Jan; 439():116-125. PubMed ID: 27984084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute oral administration of L-leucine upregulates slow-fiber- and mitochondria-related genes in skeletal muscle of rats.
    Sato Y; Sato Y; Obeng KA; Yoshizawa F
    Nutr Res; 2018 Sep; 57():36-44. PubMed ID: 30122194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of system A amino acid transport.
    Peyrollier K; Hajduch E; Blair AS; Hyde R; Hundal HS
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):361-8. PubMed ID: 10947949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultured equine satellite cells as a model system to assess leucine stimulated protein synthesis in horse muscle.
    DeBoer ML; Martinson KM; Pampusch MS; Hansen AM; Wells SM; Ward C; Hathaway M
    J Anim Sci; 2018 Feb; 96(1):143-153. PubMed ID: 29444251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism.
    Hamdi MM; Mutungi G
    J Physiol; 2011 Jul; 589(Pt 14):3623-40. PubMed ID: 21606113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.