BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 21703627)

  • 1. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait.
    Correa TA; Baker R; Graham HK; Pandy MG
    J Biomech; 2011 Jul; 44(11):2096-105. PubMed ID: 21703627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
    Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F
    PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of model geometry and joint center locations on inverse kinematic/dynamic predictions: A comparative study of sexually dimorphic models.
    Dranetz J; Chen S; Choi H
    J Biomech; 2024 May; 169():112147. PubMed ID: 38768542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiment-guided tuning of muscle-tendon parameters to estimate muscle fiber lengths and passive forces.
    Luis I; Afschrift M; Gutierrez-Farewik EM
    Sci Rep; 2024 Jun; 14(1):14652. PubMed ID: 38918538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models.
    Valero-Cuevas FJ; Cohn BA; Yngvason HF; Lawrence EL
    J Biomech; 2015 Aug; 48(11):2887-96. PubMed ID: 25980557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Psoas force recruitment in full-body musculoskeletal movement simulations is restored with a geometrically informed cost function weighting.
    Sturdy JT; Sessoms PH; Silverman AK
    J Biomech; 2024 May; 168():112130. PubMed ID: 38713998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intra and inter-rater variability in the construction of patient-specific musculoskeletal model.
    Votava J; Kratochvíl A; Daniel M
    Gait Posture; 2024 Feb; 108():195-198. PubMed ID: 38103325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flat and bouncy walking.
    Alexander RM
    J Physiol; 2007 Jul; 582(Pt 2):474. PubMed ID: 17510174
    [No Abstract]   [Full Text] [Related]  

  • 9. Contributing Components of Metabolic Energy Models to Metabolic Cost Estimations in Gait.
    Gambietz M; Nitschke M; Miehling J; Koelewijn AD
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1228-1236. PubMed ID: 37938950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictions of thumb, hand, and arm muscle parameters derived using force measurements of varying complexity and neural networks.
    Lindbeck EM; Diaz MT; Nichols JA; Harley JB
    J Biomech; 2023 Dec; 161():111834. PubMed ID: 37865980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AST: An OpenSim-based tool for the automatic scaling of generic musculoskeletal models.
    Di Pietro A; Bersani A; Curreli C; Di Puccio F
    Comput Biol Med; 2024 Jun; 175():108524. PubMed ID: 38688126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement.
    Hicks JL; Uchida TK; Seth A; Rajagopal A; Delp SL
    J Biomech Eng; 2015 Feb; 137(2):020905. PubMed ID: 25474098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering individual-specific gait signatures from data-driven models of neuromechanical dynamics.
    Winner TS; Rosenberg MC; Jain K; Kesar TM; Ting LH; Berman GJ
    PLoS Comput Biol; 2023 Oct; 19(10):e1011556. PubMed ID: 37889927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG-Driven Musculoskeletal Model Calibration With Wrapping Surface Personalization.
    Ao D; Li G; Shourijeh MS; Patten C; Fregly BJ
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4235-4244. PubMed ID: 37831559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An EMG-to-Force Processing Approach to Estimating Knee Muscle Forces during Adult, Self-Selected Speed Gait.
    Bogey R
    Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG Validation of a Subject-Specific Thoracolumbar Spine Musculoskeletal Model During Dynamic Activities in Older Adults.
    Alemi MM; Banks JJ; Lynch AC; Allaire BT; Bouxsein ML; Anderson DE
    Ann Biomed Eng; 2023 Oct; 51(10):2313-2322. PubMed ID: 37353715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring fascicle lengths of extrinsic and intrinsic thumb muscles using extended field-of-view ultrasound.
    Rakauskas TR; Barron SM; Ordonez Diaz T; Nichols JA
    J Biomech; 2023 Mar; 149():111512. PubMed ID: 36842405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of kinematic parameters of children gait obtained by inverse and direct models.
    Ziziene J; Daunoraviciene K; Juskeniene G; Raistenskis J
    PLoS One; 2022; 17(6):e0270423. PubMed ID: 35749351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological variation in paediatric lower limb bones.
    Carman L; Besier TF; Choisne J
    Sci Rep; 2022 Feb; 12(1):3251. PubMed ID: 35228607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is subject-specific musculoskeletal modelling worth the extra effort or is generic modelling worth the shortcut?
    Akhundov R; Saxby DJ; Diamond LE; Edwards S; Clausen P; Dooley K; Blyton S; Snodgrass SJ
    PLoS One; 2022; 17(1):e0262936. PubMed ID: 35077508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.