BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21703661)

  • 1. Effects of dissolution kinetics on bioaccessible arsenic from tailings and soils.
    Meunier L; Koch I; Reimer KJ
    Chemosphere; 2011 Sep; 84(10):1378-85. PubMed ID: 21703661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of particle size on arsenic bioaccessibility in gold mine tailings of Nova Scotia.
    Meunier L; Koch I; Reimer KJ
    Sci Total Environ; 2011 May; 409(11):2233-43. PubMed ID: 21435694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutritional status and gastrointestinal microbes affect arsenic bioaccessibility from soils and mine tailings in the simulator of the human intestinal microbial ecosystem.
    Laird BD; Yeung J; Peak D; Siciliano SD
    Environ Sci Technol; 2009 Nov; 43(22):8652-7. PubMed ID: 20028066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of oral bioaccessibility of arsenic in playground soil in Madrid (Spain): a three-method comparison and implications for risk assessment.
    Mingot J; De Miguel E; Chacón E
    Chemosphere; 2011 Sep; 84(10):1386-91. PubMed ID: 21601908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia.
    Meunier L; Walker SR; Wragg J; Parsons MB; Koch I; Jamieson HE; Reimer KJ
    Environ Sci Technol; 2010 Apr; 44(7):2667-74. PubMed ID: 20218545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromigration of arsenic and co-existing metals in mine tailings.
    Isosaari P; Sillanpää M
    Chemosphere; 2010 Nov; 81(9):1155-8. PubMed ID: 20888026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccessible arsenic in the home environment in southwest England.
    Rieuwerts JS; Searle P; Buck R
    Sci Total Environ; 2006 Dec; 371(1-3):89-98. PubMed ID: 17023026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of organic matter and ageing on the bioaccessibility of arsenic.
    Meunier L; Koch I; Reimer KJ
    Environ Pollut; 2011 Oct; 159(10):2530-6. PubMed ID: 21782300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the simulator of the human intestinal microbial ecosystem.
    Laird BD; Van de Wiele TR; Corriveau MC; Jamieson HE; Parsons MB; Verstraete W; Siciliano SD
    Environ Sci Technol; 2007 Aug; 41(15):5542-7. PubMed ID: 17822130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study.
    Datta R; Sarkar D; Sharma S; Sand K
    Sci Total Environ; 2006 Dec; 372(1):39-48. PubMed ID: 16973204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking selective chemical extraction of iron oxyhydroxides to arsenic bioaccessibility in soil.
    Palumbo-Roe B; Wragg J; Cave M
    Environ Pollut; 2015 Dec; 207():256-65. PubMed ID: 26412265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic speciation, distribution, and bioaccessibility in shrews and their food.
    Moriarty MM; Koch I; Reimer KJ
    Arch Environ Contam Toxicol; 2012 Apr; 62(3):529-38. PubMed ID: 21986782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils.
    Tang XY; Cui YS; Duan J; Tang L
    J Hazard Mater; 2008 Dec; 160(1):29-36. PubMed ID: 18395339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites.
    Sarkar D; Makris KC; Parra-Noonan MT; Datta R
    Environ Int; 2007 Feb; 33(2):164-9. PubMed ID: 17034861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials.
    Bruce S; Noller B; Matanitobua V; Ng J
    J Toxicol Environ Health A; 2007 Oct; 70(19):1700-11. PubMed ID: 17763089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of aging on bioaccessibility of arsenic and lead in soils.
    Liang S; Guan DX; Li J; Zhou CY; Luo J; Ma LQ
    Chemosphere; 2016 May; 151():94-100. PubMed ID: 26930247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.
    Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M
    Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.