BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 21703736)

  • 1. Dose estimation and radon action level problems due to nanosize radon progeny aerosols in underground manganese ore mine.
    Kávási N; Vigh T; Kovács T; Vaupotič J; Jobbágy V; Ishikawa T; Yonehara H
    J Environ Radioact; 2011 Sep; 102(9):806-12. PubMed ID: 21703736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of unattached and aerosol-attached activities of airborne short-lived radon progeny in indoor environments.
    Abdo MAS; Boukhair A; Fahad M; Ouakkas S; Arhouni FE; Hakkar M; Belahbib L; Al-Suhbani MN
    J Environ Radioact; 2021 Oct; 237():106665. PubMed ID: 34126300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhalation dose assessment of indoor radon progeny using biokinetic and dosimetric modeling and its application to Jordanian population.
    Al-Jundi J; Li WB; Abusini M; Tschiersch J; Hoeschen C; Oeh U
    J Environ Radioact; 2011 Jun; 102(6):574-80. PubMed ID: 21477902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miners' exposure to radon and its decay products in some Iranian non-uranium underground mines.
    Fathabadi N; Ghiassi-Nejad M; Haddadi B; Moradi M
    Radiat Prot Dosimetry; 2006; 118(1):111-6. PubMed ID: 16081493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-size radon short-lived progeny aerosols in Slovenian kindergartens in wintertime.
    Vaupotic J
    Chemosphere; 2007 Oct; 69(6):856-63. PubMed ID: 17662335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective dose of miners due to natural radioactivity in a manganese mine in Hungary.
    Kávási N; Vigh T; Sorimachi A; Ishikawa T; Tokonami S; Hosoda M
    Radiat Prot Dosimetry; 2010 Oct; 141(4):432-5. PubMed ID: 20876071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of progeny concentrations of
    Sharma S; Kumar A; Mehra R; Kaur M; Mishra R
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11440-11453. PubMed ID: 29423698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invited article: in situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary.
    Kávási N; Vigh T; Németh C; Ishikawa T; Omori Y; Janik M; Yonehara H
    Rev Sci Instrum; 2014 Feb; 85(2):022002. PubMed ID: 24593336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radon concentrations in three underground lignite mines in Turkey.
    Cile S; Altinsoy N; Celebi N
    Radiat Prot Dosimetry; 2010 Jan; 138(1):78-82. PubMed ID: 19770210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AGE-DEPENDENT INHALATION DOSE DUE TO EXPOSURE OF SHORT LIVED PROGENY OF RADON AND THORON FOR DIFFERENT AGE GROUPS IN JAMMU & KASHMIR, HIMALAYAS.
    Sharma S; Kumar A; Mehra R
    Radiat Prot Dosimetry; 2018 Dec; 182(4):427-437. PubMed ID: 29771391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thoron measurements in Hungary.
    Kovacs T
    Radiat Prot Dosimetry; 2010 Oct; 141(4):328-34. PubMed ID: 20966202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on radon and radon progeny in some living rooms.
    Mohamed A
    Radiat Prot Dosimetry; 2005; 117(4):402-7. PubMed ID: 15998645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of particle size distribution on dose conversion factors for radon progeny in the underground excavations of hard coal mine.
    Skubacz K; Wojtecki Ł; Urban P
    J Environ Radioact; 2016 Oct; 162-163():68-79. PubMed ID: 27227560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radon measurements and dose estimate of workers in a manganese ore mine.
    Shahrokhi A; Vigh T; Németh C; Csordás A; Kovács T
    Appl Radiat Isot; 2017 Jun; 124():32-37. PubMed ID: 28314163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling radon progeny concentration variations in thermal spas.
    Nikolopoulos D; Vogiannis E
    Sci Total Environ; 2007 Feb; 373(1):82-93. PubMed ID: 17188335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of underground miner data for radon progeny size reduction as cause of high radon "inverse" dose rate effect.
    Leonard BE
    Health Phys; 2007 Aug; 93(2):133-50. PubMed ID: 17622818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanosize radon short-lived decay products in the air of the Postojna Cave.
    Vaupotic J
    Sci Total Environ; 2008 Apr; 393(1):27-38. PubMed ID: 18237766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radon exposure assessment and dosimetry applied to epidemiology and risk estimation.
    Puskin JS; James AC
    Radiat Res; 2006 Jul; 166(1 Pt 2):193-208. PubMed ID: 16808608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of thoron and radon progeny in outdoors of Sirsa, India, using defined solid angle absolute beta counting.
    Mehra R; Kansal S; Singh NP
    Radiat Prot Dosimetry; 2010 Oct; 141(4):400-3. PubMed ID: 20861147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of thoron and radon progeny concentrations in Beijing, China.
    Zhang L; Liu C; Guo Q
    J Radiol Prot; 2008 Dec; 28(4):603-7. PubMed ID: 19029590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.