These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2170385)
1. Location of helical regions in tetrapyrrole-containing proteins by a helical hydrophobic moment analysis. Application to phytochrome. Parker W; Song PS J Biol Chem; 1990 Oct; 265(29):17568-75. PubMed ID: 2170385 [TBL] [Abstract][Full Text] [Related]
2. Structural domains of phytochrome deduced from homologies in amino acid sequences. Romanowski M; Song PS J Protein Chem; 1992 Apr; 11(2):139-55. PubMed ID: 1326984 [TBL] [Abstract][Full Text] [Related]
3. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Eisenberg D; Weiss RM; Terwilliger TC Nature; 1982 Sep; 299(5881):371-4. PubMed ID: 7110359 [TBL] [Abstract][Full Text] [Related]
4. Molecular modeling of phytochrome using constitutive C-phycocyanin from Fremyella diplosiphon as a putative structural template. Parker W; Goebel P; Ross CR; Song PS; Stezowski JJ Bioconjug Chem; 1994; 5(1):21-30. PubMed ID: 8199230 [TBL] [Abstract][Full Text] [Related]
5. Photochromic biliproteins from the cyanobacterium Anabaena sp. PCC 7120: lyase activities, chromophore exchange, and photochromism in phytochrome AphA. Zhao KH; Ran Y; Li M; Sun YN; Zhou M; Storf M; Kupka M; Böhm S; Bubenzer C; Scheer H Biochemistry; 2004 Sep; 43(36):11576-88. PubMed ID: 15350144 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast dynamics of phytochrome from the cyanobacterium synechocystis, reconstituted with phycocyanobilin and phycoerythrobilin. Heyne K; Herbst J; Stehlik D; Esteban B; Lamparter T; Hughes J; Diller R Biophys J; 2002 Feb; 82(2):1004-16. PubMed ID: 11806940 [TBL] [Abstract][Full Text] [Related]
7. Protonation state and structural changes of the tetrapyrrole chromophore during the Pr --> Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study. Kneip C; Hildebrandt P; Schlamann W; Braslavsky SE; Mark F; Schaffner K Biochemistry; 1999 Nov; 38(46):15185-92. PubMed ID: 10563801 [TBL] [Abstract][Full Text] [Related]
8. Effect of chromophore exchange on the resonance Raman spectra of recombinant phytochromes. Kneip C; Mozley D; Hildebrandt P; Gärtner W; Braslavsky SE; Schaffner K FEBS Lett; 1997 Sep; 414(1):23-6. PubMed ID: 9305725 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of the pea phytochrome A chromophore pocket: chromophore assembly with apophytochrome A and photoreversibility. Deforce L; Furuya M; Song PS Biochemistry; 1993 Dec; 32(51):14165-72. PubMed ID: 8260501 [TBL] [Abstract][Full Text] [Related]
10. In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B. Kunkel T; Tomizawa K; Kern R; Furuya M; Chua NH; Schäfer E Eur J Biochem; 1993 Aug; 215(3):587-94. PubMed ID: 8354265 [TBL] [Abstract][Full Text] [Related]
11. Is use of the hydrophobic moment a sound basis for predicting the structure-function relationships of membrane interactive alpha-helices? Phoenix D; Harris F Curr Protein Pept Sci; 2003 Oct; 4(5):357-66. PubMed ID: 14529529 [TBL] [Abstract][Full Text] [Related]
12. Phytochrome assembly in living cells of the yeast Saccharomyces cerevisiae. Li L; Lagarias JC Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12535-9. PubMed ID: 7809073 [TBL] [Abstract][Full Text] [Related]
13. Phytochromes with noncovalently bound chromophores: the ability of apophytochromes to direct tetrapyrrole photoisomerization. Jorissen HJ; Quest B; Lindner I; Tandeau de Marsac N; Gärtner W Photochem Photobiol; 2002 May; 75(5):554-9. PubMed ID: 12017484 [TBL] [Abstract][Full Text] [Related]
14. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins. Lamparter T; Michael N Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635 [TBL] [Abstract][Full Text] [Related]
15. Raman spectroscopic and light-induced kinetic characterization of a recombinant phytochrome of the cyanobacterium Synechocystis. Remberg A; Lindner I; Lamparter T; Hughes J; Kneip C; Hildebrandt P; Braslavsky SE; Gärtner W; Schaffner K Biochemistry; 1997 Oct; 36(43):13389-95. PubMed ID: 9341232 [TBL] [Abstract][Full Text] [Related]
16. Solvent accessibility of the phycocyanobilin chromophore in the alpha subunit of C-phycocyanin: implications for a molecular mechanism for inertial protein-matrix solvation dynamics. Homoelle BJ; Beck WF Biochemistry; 1997 Oct; 36(42):12970-5. PubMed ID: 9335557 [TBL] [Abstract][Full Text] [Related]
17. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. Eisenberg D; Schwarz E; Komaromy M; Wall R J Mol Biol; 1984 Oct; 179(1):125-42. PubMed ID: 6502707 [TBL] [Abstract][Full Text] [Related]
18. Biliverdin reduction by cyanobacterial phycocyanobilin:ferredoxin oxidoreductase (PcyA) proceeds via linear tetrapyrrole radical intermediates. Tu SL; Gunn A; Toney MD; Britt RD; Lagarias JC J Am Chem Soc; 2004 Jul; 126(28):8682-93. PubMed ID: 15250720 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of Cph1 phytochrome assembly from stopped-flow kinetics and circular dichroism. Borucki B; Otto H; Rottwinkel G; Hughes J; Heyn MP; Lamparter T Biochemistry; 2003 Nov; 42(46):13684-97. PubMed ID: 14622015 [TBL] [Abstract][Full Text] [Related]
20. Heteronuclear solution-state NMR studies of the chromophore in cyanobacterial phytochrome Cph1. Strauss HM; Hughes J; Schmieder P Biochemistry; 2005 Jun; 44(23):8244-50. PubMed ID: 15938613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]