These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2170385)

  • 21. On the collective nature of phytochrome photoactivation.
    Song C; Psakis G; Lang C; Mailliet J; Zaanen J; Gärtner W; Hughes J; Matysik J
    Biochemistry; 2011 Dec; 50(51):10987-9. PubMed ID: 22124256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer analysis of phytochrome sequences from five species: implications for the mechanism of action.
    Partis MD; Grimm R
    Z Naturforsch C J Biosci; 1990; 45(9-10):987-98. PubMed ID: 2291773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues.
    Andel F; Murphy JT; Haas JA; McDowell MT; van der Hoef I; Lugtenburg J; Lagarias JC; Mathies RA
    Biochemistry; 2000 Mar; 39(10):2667-76. PubMed ID: 10704217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting.
    Schirmer T; Huber R; Schneider M; Bode W; Miller M; Hackert ML
    J Mol Biol; 1986 Apr; 188(4):651-76. PubMed ID: 3090271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The most highly amphiphilic alpha-helices include two amino acid segments in human immunodeficiency virus glycoprotein 41.
    Eisenberg D; Wesson M
    Biopolymers; 1990 Jan; 29(1):171-7. PubMed ID: 2328285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of a photoreversible phycocyanobilin-apophytochrome adduct in vitro.
    Elich TD; Lagarias JC
    J Biol Chem; 1989 Aug; 264(22):12902-8. PubMed ID: 2753895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome.
    Jiang T; Zhang JP; Chang WR; Liang DC
    Biophys J; 2001 Aug; 81(2):1171-9. PubMed ID: 11463658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New syntheses of the C,D-ring pyrromethenones of phytochrome and phycocyanin.
    Jacobi PA; DeSimone RW; Ghosh I; Guo J; Leung SH; Pippin D
    J Org Chem; 2000 Dec; 65(25):8478-89. PubMed ID: 11112567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dimerization and inter-chromophore distance of Cph1 phytochrome from Synechocystis, as monitored by fluorescence homo and hetero energy transfer.
    Otto H; Lamparter T; Borucki B; Hughes J; Heyn MP
    Biochemistry; 2003 May; 42(19):5885-95. PubMed ID: 12741847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin.
    Brown SB; Houghton JD; Vernon DI
    J Photochem Photobiol B; 1990 Apr; 5(1):3-23. PubMed ID: 2111391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
    Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ
    Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromophore-apoprotein interactions in Synechocystis sp. PCC6803 phytochrome Cph1.
    Park CM; Shim JY; Yang SS; Kang JG; Kim JI; Luka Z; Song PS
    Biochemistry; 2000 May; 39(21):6349-56. PubMed ID: 10828948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the Cph1 holo-phytochrome from Synechocystis sp. PCC 6803.
    Hübschmann T; Börner T; Hartmann E; Lamparter T
    Eur J Biochem; 2001 Apr; 268(7):2055-63. PubMed ID: 11277928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of the chromophore in the biological photoreceptor phytochrome: an approach using chemically synthesized tetrapyrroles.
    Bongards C; Gärtner W
    Acc Chem Res; 2010 Apr; 43(4):485-95. PubMed ID: 20055450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-terminal domain of Avena phytochrome: interactions with sodium dodecyl sulfate micelles and N-terminal chain truncated phytochrome.
    Parker W; Partis M; Song PS
    Biochemistry; 1992 Oct; 31(39):9413-20. PubMed ID: 1390724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of alpha-helices on the emulsifying properties of proteins.
    Poon S; Clarke A; Currie G; Schultz C
    Biosci Biotechnol Biochem; 2001 Aug; 65(8):1713-23. PubMed ID: 11577708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A resolution.
    Ficner R; Lobeck K; Schmidt G; Huber R
    J Mol Biol; 1992 Dec; 228(3):935-50. PubMed ID: 1469725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disposition of amphiphilic helices in heteropolar environments.
    Chou KC; Zhang CT; Maggiora GM
    Proteins; 1997 May; 28(1):99-108. PubMed ID: 9144795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The prediction and orientation of alpha-helices from sequence alignments: the combined use of environment-dependent substitution tables, Fourier transform methods and helix capping rules.
    Donnelly D; Overington JP; Blundell TL
    Protein Eng; 1994 May; 7(5):645-53. PubMed ID: 8073034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo characterization of phytochrome-phycocyanobilin adducts in yeast.
    Kunkel T; Speth V; Büche C; Schäfer E
    J Biol Chem; 1995 Aug; 270(34):20193-200. PubMed ID: 7650038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.