BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 21704417)

  • 1. State-dependent corrective reactions for backward balance losses during human walking.
    Kagawa T; Ohta Y; Uno Y
    Hum Mov Sci; 2011 Dec; 30(6):1210-24. PubMed ID: 21704417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of varying acceleration of platform translation and toes-up rotations on the pattern and magnitude of balance reactions in humans.
    Szturm T; Fallang B
    J Vestib Res; 1998; 8(5):381-97. PubMed ID: 9770656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination of rapid stepping with arm pointing: anticipatory changes and step adaptation.
    Yiou E; Schneider C; Roussel D
    Hum Mov Sci; 2007 Jun; 26(3):357-75. PubMed ID: 17509710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular organization of balance control following perturbations during walking.
    Oliveira AS; Gizzi L; Kersting UG; Farina D
    J Neurophysiol; 2012 Oct; 108(7):1895-906. PubMed ID: 22773783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensatory balance reactions during forward and backward walking on a treadmill.
    Bolton DA; Misiaszek JE
    Gait Posture; 2012 Apr; 35(4):681-4. PubMed ID: 22225851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing-specific transfer of adapted muscle activity after walking in an elastic force field.
    Blanchette A; Bouyer LJ
    J Neurophysiol; 2009 Jul; 102(1):568-77. PubMed ID: 19420121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of plantar cutaneo-muscular and tendon vibration on posture and balance during quiet and perturbed stance.
    Thompson C; Bélanger M; Fung J
    Hum Mov Sci; 2011 Apr; 30(2):153-71. PubMed ID: 20580112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early corrective reactions of the leg to perturbations at the torso during walking in humans.
    Misiaszek JE; Stephens MJ; Yang JF; Pearson KG
    Exp Brain Res; 2000 Apr; 131(4):511-23. PubMed ID: 10803419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticipatory postural adjustments contribute to age-related changes in compensatory steps associated with unilateral perturbations.
    Hyodo M; Saito M; Ushiba J; Tomita Y; Minami M; Masakado Y
    Gait Posture; 2012 Jul; 36(3):625-30. PubMed ID: 22784814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of gait speed on stability of walking revealed by simulated response to tripping perturbation.
    Klemetti R; Moilanen P; Avela J; Timonen J
    Gait Posture; 2014; 39(1):534-9. PubMed ID: 24091248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
    Pratt CA; Buford JA; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):832-42. PubMed ID: 8714656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor patterns and kinematics during backward walking in the pacific giant salamander: evidence for novel motor output.
    Ashley-Ross MA; Lauder GV
    J Neurophysiol; 1997 Dec; 78(6):3047-60. PubMed ID: 9405524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The independent effect of added mass on the stability of the sagittal plane leg kinematics during steady-state human walking.
    Arellano CJ; O'Connor DP; Layne C; Kurz MJ
    J Exp Biol; 2009 Jun; 212(Pt 12):1965-70. PubMed ID: 19483014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to continuous perturbation of balance: progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions.
    Schmid M; Bottaro A; Sozzi S; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):262-78. PubMed ID: 21440318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of adding mass to the legs on the energetics and biomechanics of walking.
    Browning RC; Modica JR; Kram R; Goswami A
    Med Sci Sports Exerc; 2007 Mar; 39(3):515-25. PubMed ID: 17473778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective dynamic balance control during the swing phase of walking: stability boundaries and time-to-contact analysis.
    Remelius JG; Hamill J; van Emmerik RE
    Hum Mov Sci; 2014 Aug; 36():227-45. PubMed ID: 24856189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation of leg protraction causes context-dependent modulation of inter-leg coordination, but not of avoidance reflexes.
    Ebeling W; Dürr V
    J Exp Biol; 2006 Jun; 209(Pt 11):2199-214. PubMed ID: 16709921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics and control of the flat versus normal foot during the stance phase of walking.
    Hunt AE; Smith RM
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):391-7. PubMed ID: 15109760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention of adaptive control over varying intervals: prevention of slip- induced backward balance loss during gait.
    Bhatt T; Wang E; Pai YC
    J Neurophysiol; 2006 May; 95(5):2913-22. PubMed ID: 16407423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement patterns underlying first trial responses in human balance corrections.
    Tang KS; Honegger F; Allum JH
    Neuroscience; 2012 Dec; 225():140-51. PubMed ID: 22982621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.