These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21704456)

  • 21. Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent.
    Guo H; Stüben D; Berner Z
    J Colloid Interface Sci; 2007 Nov; 315(1):47-53. PubMed ID: 17662298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of a novel hybrid inorganic/organic polymer type material in the arsenic removal process from drinking water.
    Iesan CM; Capat C; Ruta F; Udrea I
    Water Res; 2008 Oct; 42(16):4327-33. PubMed ID: 18778845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosorption of arsenic from aqueous solution using agricultural residue 'rice polish'.
    Ranjan D; Talat M; Hasan SH
    J Hazard Mater; 2009 Jul; 166(2-3):1050-9. PubMed ID: 19131161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of arsenite from water by synthetic siderite: behaviors and mechanisms.
    Guo H; Li Y; Zhao K; Ren Y; Wei C
    J Hazard Mater; 2011 Feb; 186(2-3):1847-54. PubMed ID: 21232858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies.
    Guan XH; Wang J; Chusuei CC
    J Hazard Mater; 2008 Aug; 156(1-3):178-85. PubMed ID: 18206296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface complexation modeling of the removal of arsenic from ion-exchange waste brines with ferric chloride.
    Pakzadeh B; Batista JR
    J Hazard Mater; 2011 Apr; 188(1-3):399-407. PubMed ID: 21345589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic removal using hydrous nanostructure iron(III)-titanium(IV) binary mixed oxide from aqueous solution.
    Gupta K; Ghosh UC
    J Hazard Mater; 2009 Jan; 161(2-3):884-92. PubMed ID: 18502578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equilibrium and kinetic studies for sequestration of Cr(VI) from simulated wastewater using sunflower waste biomass.
    Jain M; Garg VK; Kadirvelu K
    J Hazard Mater; 2009 Nov; 171(1-3):328-34. PubMed ID: 19564074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of arsenic from water by Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O).
    Zhang D; Jia Y; Ma J; Li Z
    J Hazard Mater; 2011 Nov; 195():398-404. PubMed ID: 21907487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies.
    Sari A; Tuzen M
    J Hazard Mater; 2009 May; 164(2-3):1372-8. PubMed ID: 19022572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water.
    Baig JA; Kazi TG; Shah AQ; Kandhro GA; Afridi HI; Khan S; Kolachi NF
    J Hazard Mater; 2010 Jun; 178(1-3):941-8. PubMed ID: 20207480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic removal from groundwater by a newly developed adsorbent.
    Takanashi H; Tanaka A; Nakajima T; Ohki A
    Water Sci Technol; 2004; 50(8):23-32. PubMed ID: 15566183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives.
    Gupta SS; Bhattacharyya KG
    J Hazard Mater; 2006 Feb; 128(2-3):247-57. PubMed ID: 16203080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of chromium(III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature.
    Gode F; Pehlivan E
    J Hazard Mater; 2006 Aug; 136(2):330-7. PubMed ID: 16439060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas.
    Li W; Cao CY; Wu LY; Ge MF; Song WG
    J Hazard Mater; 2011 Dec; 198():143-50. PubMed ID: 22061441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC).
    Kundu S; Gupta AK
    J Hazard Mater; 2007 Apr; 142(1-2):97-104. PubMed ID: 16956718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. As(III) removal using an iron-impregnated chitosan sorbent.
    Gang DD; Deng B; Lin L
    J Hazard Mater; 2010 Oct; 182(1-3):156-61. PubMed ID: 20580158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater.
    Chen CY; Chang TH; Kuo JT; Chen YF; Chung YC
    Bioresour Technol; 2008 Nov; 99(16):7487-94. PubMed ID: 18359225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study on arsenic adsorption on polymetallic sea nodule in aqueous medium.
    Maity S; Chakravarty S; Bhattacharjee S; Roy BC
    Water Res; 2005 Jul; 39(12):2579-90. PubMed ID: 15979125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method.
    Tang W; Li Q; Gao S; Shang JK
    J Hazard Mater; 2011 Aug; 192(1):131-8. PubMed ID: 21684075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.