These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21704605)

  • 1. Unexpected wide substrate specificity of C. perfringens α-toxin phospholipase C.
    Urbina P; Collado MI; Alonso A; Goñi FM; Flores-Díaz M; Alape-Girón A; Ruysschaert JM; Lensink MF
    Biochim Biophys Acta; 2011 Oct; 1808(10):2618-27. PubMed ID: 21704605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internalization of Clostridium perfringens α-toxin leads to ERK activation and is involved on its cytotoxic effect.
    Monturiol-Gross L; Flores-Díaz M; Campos-Rodríguez D; Mora R; Rodríguez-Vega M; Marks DL; Alape-Girón A
    Cell Microbiol; 2014 Apr; 16(4):535-47. PubMed ID: 24245664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers.
    Moe PC; Heuck AP
    Biochemistry; 2010 Nov; 49(44):9498-507. PubMed ID: 20886855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipase C and sphingomyelinase activities of the Clostridium perfringens alpha-toxin.
    Urbina P; Flores-Díaz M; Alape-Girón A; Alonso A; Goni FM
    Chem Phys Lipids; 2009 May; 159(1):51-7. PubMed ID: 19428363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridium perfringens phospholipase C impairs innate immune response by inducing integrated stress response and mitochondrial-induced epigenetic modifications.
    Bunkar N; Sharma J; Chouksey A; Kumari R; Gupta PK; Tiwari R; Lodhi L; Srivastava RK; Bhargava A; Mishra PK
    Cell Signal; 2020 Nov; 75():109776. PubMed ID: 32916276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of a nontoxic variant of Clostridium perfringens α-toxin with the toxic wild-type strain.
    Vachieri SG; Clark GC; Alape-Girón A; Flores-Díaz M; Justin N; Naylor CE; Titball RW; Basak AK
    Acta Crystallogr D Biol Crystallogr; 2010 Oct; 66(Pt 10):1067-74. PubMed ID: 20944240
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Badilla-Vargas L; Pereira R; Molina-Mora JA; Alape-Girón A; Flores-Díaz M
    Front Cell Infect Microbiol; 2023; 13():1278718. PubMed ID: 37965263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of residues in the carboxy-terminal domain of Clostridium perfringens alpha-toxin (phospholipase C) which are required for its biological activities.
    Walker N; Holley J; Naylor CE; Flores-Díaz M; Alape-Girón A; Carter G; Carr FJ; Thelestam M; Keyte M; Moss DS; Basak AK; Miller J; Titball RW
    Arch Biochem Biophys; 2000 Dec; 384(1):24-30. PubMed ID: 11147832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The carboxy-terminal C2-like domain of the alpha-toxin from Clostridium perfringens mediates calcium-dependent membrane recognition.
    Guillouard I; Alzari PM; Saliou B; Cole ST
    Mol Microbiol; 1997 Dec; 26(5):867-76. PubMed ID: 9426125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of histidine residues in the alpha toxin of Clostridium perfringens.
    Titball RW; Rubidge T
    FEMS Microbiol Lett; 1990 Mar; 56(3):261-5. PubMed ID: 2111259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridium absonum alpha-toxin: new insights into clostridial phospholipase C substrate binding and specificity.
    Clark GC; Briggs DC; Karasawa T; Wang X; Cole AR; Maegawa T; Jayasekera PN; Naylor CE; Miller J; Moss DS; Nakamura S; Basak AK; Titball RW
    J Mol Biol; 2003 Oct; 333(4):759-69. PubMed ID: 14568535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virulence factors of Clostridium perfringens.
    Smith LD
    Rev Infect Dis; 1979; 1(2):254-62. PubMed ID: 232935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolytic action of phospholipases on bacterial membranes.
    Taguchi R; Ikezawa H
    J Biochem; 1977 Nov; 82(5):1225-30. PubMed ID: 201610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar inhibits the production of the toxins that trigger clostridial gas gangrene.
    Méndez MB; Goñi A; Ramirez W; Grau RR
    Microb Pathog; 2012 Jan; 52(1):85-91. PubMed ID: 22079896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opening of the active site of Clostridium perfringens alpha-toxin may be triggered by membrane binding.
    Titball RW; Naylor CE; Miller J; Moss DS; Basak AK
    Int J Med Microbiol; 2000 Oct; 290(4-5):357-61. PubMed ID: 11111911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the key toxin in gas gangrene.
    Naylor CE; Eaton JT; Howells A; Justin N; Moss DS; Titball RW; Basak AK
    Nat Struct Biol; 1998 Aug; 5(8):738-46. PubMed ID: 9699639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial phospholipases and their role in virulence.
    Songer JG
    Trends Microbiol; 1997 Apr; 5(4):156-61. PubMed ID: 9141190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of alpha toxin from Clostridium perfringens: phospholipase C.
    Jolivet-Reynaud C; Moreau H; Alouf JE
    Methods Enzymol; 1988; 165():91-4. PubMed ID: 2906730
    [No Abstract]   [Full Text] [Related]  

  • 19. On the in vitro neutralization test of Clostridium perfringens type A toxin.
    Shemanova GF; Vlasova EV; Postnikova TM
    J Hyg Epidemiol Microbiol Immunol; 1988; 32(2):219-26. PubMed ID: 2900852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the C. perfringens alpha-toxin with the active site closed by a flexible loop region.
    Eaton JT; Naylor CE; Howells AM; Moss DS; Titball RW; Basak AK
    J Mol Biol; 2002 May; 319(2):275-81. PubMed ID: 12051905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.