BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21704677)

  • 1. Midkine regulates amphetamine-induced astrocytosis in striatum but has no effects on amphetamine-induced striatal dopaminergic denervation and addictive effects: functional differences between pleiotrophin and midkine.
    Gramage E; Martín YB; Ramanah P; Pérez-García C; Herradón G
    Neuroscience; 2011 Sep; 190():307-17. PubMed ID: 21704677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neurotrophic factor pleiotrophin modulates amphetamine-seeking behaviour and amphetamine-induced neurotoxic effects: evidence from pleiotrophin knockout mice.
    Gramage E; Putelli A; Polanco MJ; González-Martín C; Ezquerra L; Alguacil LF; Pérez-Pinera P; Deuel TF; Herradón G
    Addict Biol; 2010 Oct; 15(4):403-12. PubMed ID: 20192945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pleiotrophin overexpression regulates amphetamine-induced reward and striatal dopaminergic denervation without changing the expression of dopamine D1 and D2 receptors: Implications for neuroinflammation.
    Vicente-Rodríguez M; Rojo Gonzalez L; Gramage E; Fernández-Calle R; Chen Y; Pérez-García C; Ferrer-Alcón M; Uribarri M; Bailey A; Herradón G
    Eur Neuropsychopharmacol; 2016 Nov; 26(11):1794-1805. PubMed ID: 27642078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maintenance of amphetamine-induced place preference does not correlate with astrocytosis.
    Martín YB; Gramage E; Herradón G
    Eur J Pharmacol; 2013 Jan; 699(1-3):258-63. PubMed ID: 23178526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum.
    Gramage E; Rossi L; Granado N; Moratalla R; Herradón G
    Neuroscience; 2010 Sep; 170(1):308-16. PubMed ID: 20620199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential phosphoproteome of the striatum from pleiotrophin knockout and midkine knockout mice treated with amphetamine: correlations with amphetamine-induced neurotoxicity.
    Gramage E; Herradón G; Martín YB; Vicente-Rodríguez M; Rojo L; Gnekow H; Barbero A; Pérez-García C
    Toxicology; 2013 Apr; 306():147-56. PubMed ID: 23459167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Midkine Is a Novel Regulator of Amphetamine-Induced Striatal Gliosis and Cognitive Impairment: Evidence for a Stimulus-Dependent Regulation of Neuroinflammation by Midkine.
    Vicente-Rodríguez M; Fernández-Calle R; Gramage E; Pérez-García C; Ramos MP; Herradón G
    Mediators Inflamm; 2016; 2016():9894504. PubMed ID: 28044069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of extinction of cocaine-induced place preference by midkine is related to a differential phosphorylation of peroxiredoxin 6 in dorsal striatum.
    Gramage E; Pérez-García C; Vicente-Rodríguez M; Bollen S; Rojo L; Herradón G
    Behav Brain Res; 2013 Sep; 253():223-31. PubMed ID: 23891929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous pleiotrophin and midkine regulate LPS-induced glial responses.
    Fernández-Calle R; Vicente-Rodríguez M; Gramage E; de la Torre-Ortiz C; Pérez-García C; Ramos MP; Herradón G
    Neurosci Lett; 2018 Jan; 662():213-218. PubMed ID: 29061398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomic analysis of the striatum from pleiotrophin knockout and midkine knockout mice treated with cocaine reveals regulation of oxidative stress-related proteins potentially underlying cocaine-induced neurotoxicity and neurodegeneration.
    Vicente-Rodríguez M; Gramage E; Herradón G; Pérez-García C
    Toxicology; 2013 Dec; 314(1):166-73. PubMed ID: 24096156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA.
    Granado N; Ares-Santos S; Oliva I; O'Shea E; Martin ED; Colado MI; Moratalla R
    Neurobiol Dis; 2011 Jun; 42(3):391-403. PubMed ID: 21303698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in behavioural effects of amphetamine and dopamine-related gene expression in wild-type and homozygous CCK2 receptor deficient mice.
    Rünkorg K; Värv S; Matsui T; Kõks S; Vasar E
    Neurosci Lett; 2006 Oct; 406(1-2):17-22. PubMed ID: 16916582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphetamine induces apoptosis of medium spiny striatal projection neurons via the mitochondria-dependent pathway.
    Krasnova IN; Ladenheim B; Cadet JL
    FASEB J; 2005 May; 19(7):851-3. PubMed ID: 15731293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pleiotrophin prevents cocaine-induced toxicity in vitro.
    Gramage E; Alguacil LF; Herradon G
    Eur J Pharmacol; 2008 Oct; 595(1-3):35-8. PubMed ID: 18727926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration.
    García-Pérez D; Laorden ML; Milanés MV
    Int J Neuropsychopharmacol; 2015 Jul; 19(1):. PubMed ID: 26164717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The heparin binding growth factors midkine and pleiotrophin regulate the antinociceptive effects of morphine through α(2)-adrenergic independent mechanisms.
    Gramage E; Martín YB; Herradon G
    Pharmacol Biochem Behav; 2012 May; 101(3):387-93. PubMed ID: 22342918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astrocyte delivery of glial cell line-derived neurotrophic factor in a mouse model of Parkinson's disease.
    Cunningham LA; Su C
    Exp Neurol; 2002 Apr; 174(2):230-42. PubMed ID: 11922664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fetal striatum- and ventral mesencephalon-derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigro-striatal system in vivo.
    Moses D; Drago J; Teper Y; Gantois I; Finkelstein DI; Horne MK
    Neuroscience; 2008 Jun; 154(2):606-20. PubMed ID: 18472226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral and biochemical responses to d-amphetamine in MCH1 receptor knockout mice.
    Smith DG; Qi H; Svenningsson P; Wade M; Davis RJ; Gehlert DR; Nomikos GG
    Synapse; 2008 Feb; 62(2):128-36. PubMed ID: 18000809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease.
    Yasuhara T; Shingo T; Kobayashi K; Takeuchi A; Yano A; Muraoka K; Matsui T; Miyoshi Y; Hamada H; Date I
    Eur J Neurosci; 2004 Mar; 19(6):1494-504. PubMed ID: 15066146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.