BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21704707)

  • 21. Body weight, early growth and antler size influence antler bone mineral composition of Iberian red deer (Cervus elaphus hispanicus).
    Landete-Castillejos T; Garcia A; Gallego L
    Bone; 2007 Jan; 40(1):230-5. PubMed ID: 16949898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deer antler regeneration: cells, concepts, and controversies.
    Kierdorf U; Kierdorf H; Szuwart T
    J Morphol; 2007 Aug; 268(8):726-38. PubMed ID: 17538973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structure of pedicle and hard antler bone in the European roe deer (Capreolus capreolus): a light microscope and backscattered electron imaging study.
    Kierdorf U; Flohr S; Gomez S; Landete-Castillejos T; Kierdorf H
    J Anat; 2013 Oct; 223(4):364-84. PubMed ID: 23961846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does Cu supplementation affect the mechanical and structural properties and mineral content of red deer antler bone tissue?
    Gambín P; Serrano MP; Gallego L; García A; Cappelli J; Ceacero F; Landete-Castillejos T
    Animal; 2017 Aug; 11(8):1312-1320. PubMed ID: 28069103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the mechanisms regulating regeneration of deer antlers.
    Price J; Allen S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):809-22. PubMed ID: 15293809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study.
    Kierdorf U; Kierdorf H; Boyde A
    J Anat; 2000 Jan; 196 ( Pt 1)(Pt 1):71-83. PubMed ID: 10697290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of castration on antler growth in fallow deer (Dama dama L.).
    Kierdorf U; Kierdorf H; Knuth S
    J Exp Zool; 1995 Sep; 273(1):33-43. PubMed ID: 7561722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nerve growth factor mRNA expression in the regenerating antler tip of red deer (Cervus elaphus).
    Li C; Stanton JA; Robertson TM; Suttie JM; Sheard PW; Harris AJ; Clark DE
    PLoS One; 2007 Jan; 2(1):e148. PubMed ID: 17215957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deer antlers - a model of mammalian appendage regeneration: an extensive review.
    Kierdorf U; Kierdorf H
    Gerontology; 2011; 57(1):53-65. PubMed ID: 20332600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrastructural aspects of cartilage formation, mineralization, and degeneration during primary antler growth in fallow deer (Dama dama).
    Szuwart T; Kierdorf H; Kierdorf U; Clemen G
    Ann Anat; 1998 Dec; 180(6):501-10. PubMed ID: 9862029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhomogeneous fibril stretching in antler starts after macroscopic yielding: indication for a nanoscale toughening mechanism.
    Krauss S; Fratzl P; Seto J; Currey JD; Estevez JA; Funari SS; Gupta HS
    Bone; 2009 Jun; 44(6):1105-10. PubMed ID: 19236962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequencing and de novo analysis of the Chinese Sika deer antler-tip transcriptome during the ossification stage using Illumina RNA-Seq technology.
    Yao B; Zhao Y; Zhang H; Zhang M; Liu M; Liu H; Li J
    Biotechnol Lett; 2012 May; 34(5):813-22. PubMed ID: 22212490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus: expression dynamics for regulatory and effector genes.
    Stéger V; Molnár A; Borsy A; Gyurján I; Szabolcsi Z; Dancs G; Molnár J; Papp P; Nagy J; Puskás L; Barta E; Zomborszky Z; Horn P; Podani J; Semsey S; Lakatos P; Orosz L
    Mol Genet Genomics; 2010 Oct; 284(4):273-87. PubMed ID: 20697743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid neural growth: calcitonin gene-related peptide and substance P-containing nerves attain exceptional growth rates in regenerating deer antler.
    Gray C; Hukkanen M; Konttinen YT; Terenghi G; Arnett TR; Jones SJ; Burnstock G; Polak JM
    Neuroscience; 1992 Oct; 50(4):953-63. PubMed ID: 1280352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus).
    Gaspar-López E; Landete-Castillejos T; Estevez JA; Ceacero F; Gallego L; García AJ
    Reprod Domest Anim; 2010 Apr; 45(2):243-9. PubMed ID: 18992114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pedicle and antler development following sectioning of the sensory nerves to the antlerogenic region of red deer (Cervus elaphus).
    Li C; Sheard PW; Corson ID; Suttie JM
    J Exp Zool; 1993 Oct; 267(2):188-97. PubMed ID: 8409900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programmed cell death in the regenerating deer antler.
    Colitti M; Allen SP; Price JS
    J Anat; 2005 Oct; 207(4):339-51. PubMed ID: 16191163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histogenesis of antlerogenic tissues cultivated in diffusion chambers in vivo in red deer (Cervus elaphus).
    Li C; Waldrup KA; Corson ID; Littlejohn RP; Suttie JM
    J Exp Zool; 1995 Aug; 272(5):345-55. PubMed ID: 7673872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression and localization of insulin-like growth factor-I in four parts of the red deer antler.
    Gu L; Mo E; Yang Z; Zhu X; Fang Z; Sun B; Wang C; Bao J; Sung C
    Growth Factors; 2007 Aug; 25(4):264-79. PubMed ID: 18092234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origination of antlerogenesis.
    Heckeberg NS
    J Morphol; 2017 Feb; 278(2):182-202. PubMed ID: 27859491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.