These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 21705164)
1. Magnetic resonance imaging on CO(2) miscible and immiscible displacement in oil-saturated glass beads pack. Liu Y; Zhao Y; Zhao J; Song Y Magn Reson Imaging; 2011 Oct; 29(8):1110-8. PubMed ID: 21705164 [TBL] [Abstract][Full Text] [Related]
2. Study of the fluid flow characteristics in a porous medium for CO2 geological storage using MRI. Song Y; Jiang L; Liu Y; Yang M; Zhou X; Zhao Y; Dou B; Abudula A; Xue Z Magn Reson Imaging; 2014 Jun; 32(5):574-84. PubMed ID: 24674025 [TBL] [Abstract][Full Text] [Related]
3. Displacement front behavior of near miscible CO Liu Y; Teng Y; Jiang L; Zhao J; Zhang Y; Wang D; Song Y Magn Reson Imaging; 2017 Apr; 37():171-178. PubMed ID: 27923743 [TBL] [Abstract][Full Text] [Related]
4. Behavior of CO Jiang L; Yu M; Liu Y; Yang M; Zhang Y; Xue Z; Suekane T; Song Y Magn Reson Imaging; 2017 Apr; 37():100-106. PubMed ID: 27836385 [TBL] [Abstract][Full Text] [Related]
5. MRI measurements of CO2 hydrate dissociation rate in a porous medium. Yang M; Song Y; Zhao Y; Liu Y; Jiang L; Li Q Magn Reson Imaging; 2011 Sep; 29(7):1007-13. PubMed ID: 21601406 [TBL] [Abstract][Full Text] [Related]
6. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack. Liu Y; Jiang L; Zhu N; Zhao Y; Zhang Y; Wang D; Yang M; Zhao J; Song Y Magn Reson Imaging; 2015 Sep; 33(7):918-26. PubMed ID: 25940392 [TBL] [Abstract][Full Text] [Related]
7. Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network. Wang Y; Zhang C; Wei N; Oostrom M; Wietsma TW; Li X; Bonneville A Environ Sci Technol; 2013 Jan; 47(1):212-8. PubMed ID: 22676368 [TBL] [Abstract][Full Text] [Related]
8. Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Zhang C; Oostrom M; Grate JW; Wietsma TW; Warner MG Environ Sci Technol; 2011 Sep; 45(17):7581-8. PubMed ID: 21774502 [TBL] [Abstract][Full Text] [Related]
9. Diffusion NMR methods applied to xenon gas for materials study. Mair RW; Rosen MS; Wang R; Cory DG; Walsworth RL Magn Reson Chem; 2002 Dec; 40(13):S29-39. PubMed ID: 12807139 [TBL] [Abstract][Full Text] [Related]
10. Spin echo SPI methods for quantitative analysis of fluids in porous media. Li L; Han H; Balcom BJ J Magn Reson; 2009 Jun; 198(2):252-60. PubMed ID: 19307140 [TBL] [Abstract][Full Text] [Related]
11. Study of miscible and immiscible flows in a microchannel using magnetic resonance imaging. Akpa BS; Matthews SM; Sederman AJ; Yunus K; Fisher AC; Johns ML; Gladden LF Anal Chem; 2007 Aug; 79(16):6128-34. PubMed ID: 17630718 [TBL] [Abstract][Full Text] [Related]
12. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process. Salehi MM; Safarzadeh MA; Sahraei E; Nejad SA J Pet Sci Eng; 2014 Aug; 120():86-93. PubMed ID: 26594096 [TBL] [Abstract][Full Text] [Related]
13. Estimation of minimum miscibility pressure (MMP) of CO2 and liquid n-alkane systems using an improved MRI technique. Liu Y; Jiang L; Song Y; Zhao Y; Zhang Y; Wang D Magn Reson Imaging; 2016 Feb; 34(2):97-104. PubMed ID: 26523648 [TBL] [Abstract][Full Text] [Related]
14. A visualization study on two-phase gravity drainage in porous media by using magnetic resonance imaging. Teng Y; Liu Y; Jiang L; Song Y; Zhao J; Zhang Y; Wang D Magn Reson Imaging; 2016 Sep; 34(7):855-63. PubMed ID: 26968140 [TBL] [Abstract][Full Text] [Related]
15. Visual analysis of immiscible displacement processes in porous media under ultrasound effect. Naderi K; Babadagli T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056323. PubMed ID: 21728663 [TBL] [Abstract][Full Text] [Related]
16. Merging molecular and anatomical information: a feasibility study on rodents using microPET and MRI. Guo WY; Lee JJ; Lin MH; Yang CC; Chen CL; Huang YH; Tyan YS; Wu TH Nucl Med Commun; 2007 Oct; 28(10):804-12. PubMed ID: 17728611 [TBL] [Abstract][Full Text] [Related]
17. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Wei ZJ; Liao AM; Zhang HX; Liu J; Jiang ST Bioresour Technol; 2009 Sep; 100(18):4214-9. PubMed ID: 19414250 [TBL] [Abstract][Full Text] [Related]
18. Magnetic resonance imaging of nonaqueous phase liquid during soil vapor extraction in heterogeneous porous media. Chu Y; Werth CJ; Valocchi AJ; Yoon H; Webb AG J Contam Hydrol; 2004 Sep; 73(1-4):15-37. PubMed ID: 15336788 [TBL] [Abstract][Full Text] [Related]
19. The observation and quantification of oil migration and binding in sediments using T2 magnetic resonance imaging. Reeves AD; Chudek JA Magn Reson Imaging; 2007 Jan; 25(1):136-43. PubMed ID: 17222725 [TBL] [Abstract][Full Text] [Related]
20. Research on the Influence of Heterogeneity and Viscosity on the Fluid Intrusion Mechanism of the Water Flooding Process Based on the Microscopic Visualization Experiment. Wang J; Li J; Li Y; Xu R; Xu G; Yang J ACS Omega; 2024 Jan; 9(2):2866-2873. PubMed ID: 38250406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]