BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21705227)

  • 1. Fluorescence detection of hyaluronidase.
    Fudala R; Mummert ME; Gryczynski Z; Gryczynski I
    J Photochem Photobiol B; 2011 Sep; 104(3):473-7. PubMed ID: 21705227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a fluorescent substrate to measure hyaluronidase activity.
    Zhang LS; Mummert ME
    Anal Biochem; 2008 Aug; 379(1):80-5. PubMed ID: 18492482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET based ratio-metric sensing of hyaluronidase in synthetic urine as a biomarker for bladder and prostate cancer.
    Chib R; Raut S; Fudala R; Chang A; Mummert M; Rich R; Gryczynski Z; Gryczynski I
    Curr Pharm Biotechnol; 2013; 14(4):470-4. PubMed ID: 23360262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lifetime-based sensing of the hyaluronidase using fluorescein labeled hyaluronic acid.
    Fudala R; Mummert ME; Gryczynski Z; Rich R; Borejdo J; Gryczynski I
    J Photochem Photobiol B; 2012 Jan; 106(1):69-73. PubMed ID: 22082776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence turn-on Cu
    Yan G; Kong B; Zhao J; Ni H; Zhan L; Huang C; Zou H
    J Photochem Photobiol B; 2022 Aug; 233():112496. PubMed ID: 35689932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of hyaluronidase activity using fluorescein labeled hyaluronic acid and Fluorescence Correlation Spectroscopy.
    Rich RM; Mummert M; Foldes-Papp Z; Gryczynski Z; Borejdo J; Gryczynski I; Fudala R
    J Photochem Photobiol B; 2012 Nov; 116():7-12. PubMed ID: 23018154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hyaluronic acid fluorescent hydrogel based on fluorescence resonance energy transfer for sensitive detection of hyaluronidase.
    Ge M; Sun J; Chen M; Tian J; Yin H; Yin J
    Anal Bioanal Chem; 2020 Mar; 412(8):1915-1923. PubMed ID: 32030494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients.
    Cheng D; Han W; Yang K; Song Y; Jiang M; Song E
    Talanta; 2014 Dec; 130():408-14. PubMed ID: 25159428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Fluorescence Resonance Energy Transfer between Fluorescein and Rhodamine 6G.
    Saha J; Datta Roy A; Dey D; Chakraborty S; Bhattacharjee D; Paul PK; Hussain SA
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():143-9. PubMed ID: 25956326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ratiometric fluorescent probe for hyaluronidase detection via hyaluronan-induced formation of red-light emitting excimers.
    Hu Q; Zeng F; Wu S
    Biosens Bioelectron; 2016 May; 79():776-83. PubMed ID: 26774093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cationic Carbon Dots for Modification-Free Detection of Hyaluronidase via an Electrostatic-Controlled Ratiometric Fluorescence Assay.
    Yang W; Ni J; Luo F; Weng W; Wei Q; Lin Z; Chen G
    Anal Chem; 2017 Aug; 89(16):8384-8390. PubMed ID: 28730807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous DNA binding and bending by EcoRV endonuclease observed by real-time fluorescence.
    Hiller DA; Fogg JM; Martin AM; Beechem JM; Reich NO; Perona JJ
    Biochemistry; 2003 Dec; 42(49):14375-85. PubMed ID: 14661948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn(2+) using a rhodamine spirolactam as a trigger.
    Han ZX; Zhang XB; Li Z; Gong YJ; Wu XY; Jin Z; He CM; Jian LX; Zhang J; Shen GL; Yu RQ
    Anal Chem; 2010 Apr; 82(8):3108-13. PubMed ID: 20334436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of Intracellular Hyaluronidase Isoform by Degradable Nanoassembly Coupled with RNA-Binding Fluorescence Amplification.
    Li Y; Yang S; Guo L; Xiao Y; Luo J; Li Y; Wong MS; Yang R
    Anal Chem; 2019 May; 91(10):6887-6893. PubMed ID: 30990018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotaxane-type resorcinarene tetramers as histone-sensing fluorescent receptors.
    Hayashida O; Uchiyama M
    Org Biomol Chem; 2008 Sep; 6(17):3166-70. PubMed ID: 18698476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral.
    Takakusa H; Kikuchi K; Urano Y; Kojima H; Nagano T
    Chemistry; 2003 Apr; 9(7):1479-85. PubMed ID: 12658644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a new rhodamine-based FRET platform and its application as a Cu2+ probe.
    Guan X; Lin W; Huang W
    Org Biomol Chem; 2014 Jun; 12(23):3944-9. PubMed ID: 24805088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel multicolor fluorescently labeled silica nanoparticles for interface fluorescence resonance energy transfer to and from labeled avidin.
    Saleh SM; Müller R; Mader HS; Duerkop A; Wolfbeis OS
    Anal Bioanal Chem; 2010 Oct; 398(4):1615-23. PubMed ID: 20446080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing Hg2+ ions in living cells using a FRET-based fluorescent sensor.
    Zhou Y; Chu K; Zhen H; Fang Y; Yao C
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():197-202. PubMed ID: 23380148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel dual-switch fluorescent probe for Cr(III) ion based on PET-FRET processes.
    Hu F; Zheng B; Wang D; Liu M; Du J; Xiao D
    Analyst; 2014 Jul; 139(14):3607-13. PubMed ID: 24875402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.