These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 21705404)
1. Cutaneous vascular and core temperature responses to sustained cold exposure in hypoxia. Simmons GH; Barrett-O'Keefe Z; Minson CT; Halliwill JR Exp Physiol; 2011 Oct; 96(10):1062-71. PubMed ID: 21705404 [TBL] [Abstract][Full Text] [Related]
2. Cold-induced cutaneous vasoconstriction is mediated by Rho kinase in vivo in human skin. Thompson-Torgerson CS; Holowatz LA; Flavahan NA; Kenney WL Am J Physiol Heart Circ Physiol; 2007 Apr; 292(4):H1700-5. PubMed ID: 17172270 [TBL] [Abstract][Full Text] [Related]
3. Evidence for a functional vasoconstrictor role for ATP in the human cutaneous microvasculature. Lang JA; Krajek AC; Smaller KA Exp Physiol; 2017 Jun; 102(6):684-693. PubMed ID: 28295755 [TBL] [Abstract][Full Text] [Related]
4. Rate dependency and role of nitric oxide in the vascular response to direct cooling in human skin. Yamazaki F; Sone R; Zhao K; Alvarez GE; Kosiba WA; Johnson JM J Appl Physiol (1985); 2006 Jan; 100(1):42-50. PubMed ID: 16179403 [TBL] [Abstract][Full Text] [Related]
5. Nonnoradrenergic mechanism of reflex cutaneous vasoconstriction in men. Stephens DP; Aoki K; Kosiba WA; Johnson JM Am J Physiol Heart Circ Physiol; 2001 Apr; 280(4):H1496-504. PubMed ID: 11247759 [TBL] [Abstract][Full Text] [Related]
6. No effect of systemic isocapnic hypoxia on α-adrenergic vasoconstrictor responsiveness in human skin. Simmons GH; Fieger SM; Wong BJ; Minson CT; Halliwill JR Acta Physiol (Oxf); 2011 Mar; 201(3):339-47. PubMed ID: 20946237 [TBL] [Abstract][Full Text] [Related]
7. Local ascorbate administration inhibits the adrenergic vasoconstrictor response to local cooling in the human skin. Yamazaki F J Appl Physiol (1985); 2010 Feb; 108(2):328-33. PubMed ID: 20007855 [TBL] [Abstract][Full Text] [Related]
8. Hypoxic cutaneous vasodilation is sustained during brief cold stress and is not affected by changes in CO2. Simmons GH; Fieger SM; Minson CT; Halliwill JR J Appl Physiol (1985); 2010 Apr; 108(4):788-92. PubMed ID: 20167671 [TBL] [Abstract][Full Text] [Related]
9. Local tetrahydrobiopterin administration augments cutaneous vasoconstriction in aged humans. Lang JA; Holowatz LA; Kenney WL J Physiol; 2009 Aug; 587(Pt 15):3967-74. PubMed ID: 19491246 [TBL] [Abstract][Full Text] [Related]
10. Neuropeptide Y antagonism reduces reflex cutaneous vasoconstriction in humans. Stephens DP; Saad AR; Bennett LA; Kosiba WA; Johnson JM Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H1404-9. PubMed ID: 15165988 [TBL] [Abstract][Full Text] [Related]
11. Intradermal administration of ATP does not mitigate tyramine-stimulated vasoconstriction in human skin. Wingo JE; Brothers RM; Del Coso J; Crandall CG Am J Physiol Regul Integr Comp Physiol; 2010 May; 298(5):R1417-20. PubMed ID: 20237299 [TBL] [Abstract][Full Text] [Related]
12. Cutaneous vasoconstrictor response to whole body skin cooling is altered by time of day. Aoki K; Stephens DP; Saad AR; Johnson JM J Appl Physiol (1985); 2003 Mar; 94(3):930-4. PubMed ID: 12571128 [TBL] [Abstract][Full Text] [Related]
13. The nitric oxide dependence of cutaneous microvascular function to independent and combined hypoxic cold exposure. Arnold JT; Lloyd AB; Bailey SJ; Fujimoto T; Matsutake R; Takayanagi M; Nishiyasu T; Fujii N J Appl Physiol (1985); 2020 Oct; 129(4):947-956. PubMed ID: 32881624 [TBL] [Abstract][Full Text] [Related]
14. Rho kinase-mediated local cold-induced cutaneous vasoconstriction is augmented in aged human skin. Thompson-Torgerson CS; Holowatz LA; Flavahan NA; Kenney WL Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H30-6. PubMed ID: 17416609 [TBL] [Abstract][Full Text] [Related]
15. Noradrenaline and neuropeptide Y contribute to initial, but not sustained, vasodilatation in response to local skin warming in humans. Hodges GJ; Sparks PA Exp Physiol; 2014 Feb; 99(2):381-92. PubMed ID: 24213859 [TBL] [Abstract][Full Text] [Related]
16. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals. Caldwell JN; van den Heuvel AMJ; Kerry P; Clark MJ; Peoples GE; Taylor NAS Exp Physiol; 2018 Apr; 103(4):512-522. PubMed ID: 29345019 [TBL] [Abstract][Full Text] [Related]
17. The involvement of nitric oxide in the cutaneous vasoconstrictor response to local cooling in humans. Hodges GJ; Zhao K; Kosiba WA; Johnson JM J Physiol; 2006 Aug; 574(Pt 3):849-57. PubMed ID: 16728451 [TBL] [Abstract][Full Text] [Related]
18. Sympathetic nonnoradrenergic cutaneous vasoconstriction in women is associated with reproductive hormone status. Stephens DP; Bennett LA; Aoki K; Kosiba WA; Charkoudian N; Johnson JM Am J Physiol Heart Circ Physiol; 2002 Jan; 282(1):H264-72. PubMed ID: 11748071 [TBL] [Abstract][Full Text] [Related]
19. Relative roles of local and reflex components in cutaneous vasoconstriction during skin cooling in humans. Alvarez GE; Zhao K; Kosiba WA; Johnson JM J Appl Physiol (1985); 2006 Jun; 100(6):2083-8. PubMed ID: 16484359 [TBL] [Abstract][Full Text] [Related]
20. Contributions of endothelial nitric oxide synthase, noradrenaline, and neuropeptide Y to local warming-induced cutaneous vasodilatation in men. Hodges GJ; Sparks PA Microvasc Res; 2013 Nov; 90():128-34. PubMed ID: 24012636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]