These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21705457)

  • 1. Towards spoken clinical-question answering: evaluating and adapting automatic speech-recognition systems for spoken clinical questions.
    Liu F; Tur G; Hakkani-Tür D; Yu H
    J Am Med Inform Assoc; 2011; 18(5):625-30. PubMed ID: 21705457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation into the feasibility of spoken clinical question answering.
    Miller T; Ravvaz K; Cimino JJ; Yu H
    AMIA Annu Symp Proc; 2011; 2011():954-9. PubMed ID: 22195154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining automatic speech recognition with semantic natural language processing in schizophrenia.
    Ciampelli S; Voppel AE; de Boer JN; Koops S; Sommer IEC
    Psychiatry Res; 2023 Jul; 325():115252. PubMed ID: 37236098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrospective Analysis of Clinical Performance of an Estonian Speech Recognition System for Radiology: Effects of Different Acoustic and Language Models.
    Paats A; Alumäe T; Meister E; Fridolin I
    J Digit Imaging; 2018 Oct; 31(5):615-621. PubMed ID: 29713836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Mm-hm," "Uh-uh": are non-lexical conversational sounds deal breakers for the ambient clinical documentation technology?
    Tran BD; Latif K; Reynolds TL; Park J; Elston Lafata J; Tai-Seale M; Zheng K
    J Am Med Inform Assoc; 2023 Mar; 30(4):703-711. PubMed ID: 36688526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confusion2Vec 2.0: Enriching ambiguous spoken language representations with subwords.
    Gurunath Shivakumar P; Georgiou P; Narayanan S
    PLoS One; 2022; 17(3):e0264488. PubMed ID: 35245327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proof-of-concept study for automatic speech recognition to transcribe AAC speakers' speech from high-technology AAC systems.
    Chen SK; Saeli C; Hu G
    Assist Technol; 2024 Jul; 36(4):319-326. PubMed ID: 37748185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Speech Recognition Performance Improvement for Mandarin Based on Optimizing Gain Control Strategy.
    Wang D; Wei Y; Zhang K; Ji D; Wang Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete and Resilient Documentation for Operational Medical Environments Leveraging Mobile Hands-free Technology in a Systems Approach: Experimental Study.
    Woo M; Mishra P; Lin J; Kar S; Deas N; Linduff C; Niu S; Yang Y; McClendon J; Smith DH; Shelton SL; Gainey CE; Gerard WC; Smith MC; Griffin SF; Gimbel RW; Wang KC
    JMIR Mhealth Uhealth; 2021 Oct; 9(10):e32301. PubMed ID: 34636729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of an automatic speech recognition model using interview data from long-term care for older adults.
    Hacking C; Verbeek H; Hamers JPH; Aarts S
    J Am Med Inform Assoc; 2023 Feb; 30(3):411-417. PubMed ID: 36495570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linguistic disparities in cross-language automatic speech recognition transfer from Arabic to Tashlhiyt.
    Zellou G; Lahrouchi M
    Sci Rep; 2024 Jan; 14(1):313. PubMed ID: 38172277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severity-based adaptation with limited data for ASR to aid dysarthric speakers.
    Mustafa MB; Salim SS; Mohamed N; Al-Qatab B; Siong CE
    PLoS One; 2014; 9(1):e86285. PubMed ID: 24466004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of speech recognition technology by people living with amyotrophic lateral sclerosis: a scoping review.
    Cave R; Bloch S
    Disabil Rehabil Assist Technol; 2023 Oct; 18(7):1043-1055. PubMed ID: 34511007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revolutionizing Radiological Analysis: The Future of French Language Automatic Speech Recognition in Healthcare.
    Jelassi M; Jemai O; Demongeot J
    Diagnostics (Basel); 2024 Apr; 14(9):. PubMed ID: 38732310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Racial disparities in automated speech recognition.
    Koenecke A; Nam A; Lake E; Nudell J; Quartey M; Mengesha Z; Toups C; Rickford JR; Jurafsky D; Goel S
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7684-7689. PubMed ID: 32205437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Spoken Language Representation for Intent Understanding in a Task-Oriented Dialogue System.
    Kim JW; Yoon H; Jung HY
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an ASR System for Medical Conversations.
    Renato A; Luna D; Benítez S
    Stud Health Technol Inform; 2024 Jan; 310():664-668. PubMed ID: 38269892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between people with dysarthria and speech recognition systems: A review.
    Jaddoh A; Loizides F; Rana O
    Assist Technol; 2023 Jul; 35(4):330-338. PubMed ID: 35435810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNN Language Processing Model-Driven Spoken Dialogue System Modeling Method.
    Zhu X
    Comput Intell Neurosci; 2022; 2022():6993515. PubMed ID: 35256880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.