BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21705527)

  • 1. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain.
    Ha SJ; Wei Q; Kim SR; Galazka JM; Cate JH; Jin YS
    Appl Environ Microbiol; 2011 Aug; 77(16):5822-5. PubMed ID: 21705527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered
    Lee WH; Jin YS
    J Microbiol Biotechnol; 2021 Jul; 31(7):1035-1043. PubMed ID: 34226403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellodextrin transport in yeast for improved biofuel production.
    Galazka JM; Tian C; Beeson WT; Martinez B; Glass NL; Cate JH
    Science; 2010 Oct; 330(6000):84-6. PubMed ID: 20829451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.
    Kim H; Lee WH; Galazka JM; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1087-94. PubMed ID: 24190499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Zha J; Li BZ; Shen MH; Hu ML; Song H; Yuan YJ
    PLoS One; 2013; 8(7):e68317. PubMed ID: 23844185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for transceptor function of cellodextrin transporters in Neurospora crassa.
    Znameroski EA; Li X; Tsai JC; Galazka JM; Glass NL; Cate JH
    J Biol Chem; 2014 Jan; 289(5):2610-9. PubMed ID: 24344125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae.
    Lian J; Li Y; HamediRad M; Zhao H
    Biotechnol Bioeng; 2014 Aug; 111(8):1521-31. PubMed ID: 24519319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.
    Bae YH; Kang KH; Jin YS; Seo JH
    J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase.
    Kim H; Oh EJ; Lane ST; Lee WH; Cate JHD; Jin YS
    J Biotechnol; 2018 Jun; 275():53-59. PubMed ID: 29660472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Engineered
    Choi HJ; Jin YS; Lee WH
    J Microbiol Biotechnol; 2022 Jan; 32(1):117-125. PubMed ID: 34949751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation.
    Lee WH; Jin YS
    J Biotechnol; 2017 Mar; 245():1-8. PubMed ID: 28143766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase.
    Lee WH; Nan H; Kim HJ; Jin YS
    J Biotechnol; 2013 Sep; 167(3):316-22. PubMed ID: 23835155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.
    Lee WH; Jin YS
    J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Lipomyces starkeyi gene Ls120451 encodes a cellobiose transporter that enables cellobiose fermentation in Saccharomyces cerevisiae.
    de Ruijter JC; Igarashi K; Penttilä M
    FEMS Yeast Res; 2020 May; 20(3):. PubMed ID: 32310262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters.
    Ha SJ; Galazka JM; Joong Oh E; Kordić V; Kim H; Jin YS; Cate JH
    Metab Eng; 2013 Jan; 15():134-43. PubMed ID: 23178501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica.
    Lane S; Zhang S; Wei N; Rao C; Jin YS
    Biotechnol Bioeng; 2015 May; 112(5):1012-22. PubMed ID: 25421388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae.
    Li S; Du J; Sun J; Galazka JM; Glass NL; Cate JH; Yang X; Zhao H
    Mol Biosyst; 2010 Nov; 6(11):2129-32. PubMed ID: 20871937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of non-anchored cell wall protein NCW-1 promotes cellulase production by increasing cellobiose uptake in Neurospora crassa.
    Lin L; Chen Y; Li J; Wang S; Sun W; Tian C
    Biotechnol Lett; 2017 Apr; 39(4):545-551. PubMed ID: 28039555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins.
    Eriksen DT; Hsieh PC; Lynn P; Zhao H
    Microb Cell Fact; 2013 Jun; 12():61. PubMed ID: 23802545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.