BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21705608)

  • 1. The Bradyrhizobium japonicum frcB gene encodes a diheme ferric reductase.
    Small SK; O'Brian MR
    J Bacteriol; 2011 Aug; 193(16):4088-94. PubMed ID: 21705608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum.
    Small SK; Puri S; Sangwan I; O'Brian MR
    J Bacteriol; 2009 Mar; 191(5):1361-8. PubMed ID: 19114488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HmuP is a coactivator of Irr-dependent expression of heme utilization genes in Bradyrhizobium japonicum.
    Escamilla-Hernandez R; O'Brian MR
    J Bacteriol; 2012 Jun; 194(12):3137-43. PubMed ID: 22505680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two heme binding sites are involved in the regulated degradation of the bacterial iron response regulator (Irr) protein.
    Yang J; Ishimori K; O'Brian MR
    J Biol Chem; 2005 Mar; 280(9):7671-6. PubMed ID: 15613477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum.
    Hamza I; Qi Z; King ND; O'Brian MR
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():669-676. PubMed ID: 10746770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cytochrome b561 with ferric reductase activity from the parasitic blood fluke, Schistosoma japonicum.
    Glanfield A; McManus DP; Smyth DJ; Lovas EM; Loukas A; Gobert GN; Jones MK
    PLoS Negl Trop Dis; 2010 Nov; 4(11):e884. PubMed ID: 21103361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum.
    Nienaber A; Hennecke H; Fischer HM
    Mol Microbiol; 2001 Aug; 41(4):787-800. PubMed ID: 11532144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress promotes degradation of the Irr protein to regulate haem biosynthesis in Bradyrhizobium japonicum.
    Yang J; Panek HR; O'Brian MR
    Mol Microbiol; 2006 Apr; 60(1):209-18. PubMed ID: 16556232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferric reductase A is essential for effective iron acquisition in Paracoccus denitrificans.
    Sedláček V; van Spanning RJM; Kučera I
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1294-1301. PubMed ID: 19332830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis.
    Sankari S; O'Brian MR
    J Biol Chem; 2016 Jul; 291(30):15653-62. PubMed ID: 27288412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration.
    Delgado MJ; Bonnard N; Tresierra-Ayala A; Bedmar EJ; Müller P
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3395-3403. PubMed ID: 14663073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insights into heme-mediated transcriptional regulation via a bacterial manganese-binding iron regulator, iron response regulator (Irr).
    Nam D; Matsumoto Y; Uchida T; O'Brian MR; Ishimori K
    J Biol Chem; 2020 Aug; 295(32):11316-11325. PubMed ID: 32554810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Bradyrhizobium japonicum fsrB gene is essential for utilization of structurally diverse ferric siderophores to fulfill its nutritional iron requirement.
    Ong A; O'Brian MR
    Mol Microbiol; 2023 Mar; 119(3):340-349. PubMed ID: 36648393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dominant-negative fur mutation in Bradyrhizobium japonicum.
    Benson HP; LeVier K; Guerinot ML
    J Bacteriol; 2004 Mar; 186(5):1409-14. PubMed ID: 14973020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum is an iron-responsive transcriptional repressor in vitro.
    Friedman YE; O'Brian MR
    J Biol Chem; 2004 Jul; 279(31):32100-5. PubMed ID: 15148310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism.
    Yang J; Sangwan I; Lindemann A; Hauser F; Hennecke H; Fischer HM; O'Brian MR
    Mol Microbiol; 2006 Apr; 60(2):427-37. PubMed ID: 16573691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential control of Bradyrhizobium japonicum iron stimulon genes through variable affinity of the iron response regulator (Irr) for target gene promoters and selective loss of activator function.
    Jaggavarapu S; O'Brian MR
    Mol Microbiol; 2014 May; 92(3):609-24. PubMed ID: 24646221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free flavins accelerate release of ferrous iron from iron storage proteins by both free flavin-dependent and -independent ferric reductases in Escherichia coli.
    Satoh J; Kimata S; Nakamoto S; Ishii T; Tanaka E; Yumoto S; Takeda K; Yoshimura E; Kanesaki Y; Ishige T; Tanaka K; Abe A; Kawasaki S; Niimura Y
    J Gen Appl Microbiol; 2020 Jan; 65(6):308-315. PubMed ID: 31281172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli.
    Miethke M; Hou J; Marahiel MA
    Biochemistry; 2011 Dec; 50(50):10951-64. PubMed ID: 22098718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferric iron reductases and their contribution to unicellular ferrous iron uptake.
    Cain TJ; Smith AT
    J Inorg Biochem; 2021 May; 218():111407. PubMed ID: 33684686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.