These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
542 related articles for article (PubMed ID: 21705795)
21. Temperature-related geographical shifts among passerines: contrasting processes along poleward and equatorward range margins. Coristine LE; Kerr JT Ecol Evol; 2015 Nov; 5(22):5162-5176. PubMed ID: 30151121 [TBL] [Abstract][Full Text] [Related]
22. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763 [TBL] [Abstract][Full Text] [Related]
23. Coping with temperature at the warm edge--patterns of thermal adaptation in the microbial eukaryote Paramecium caudatum. Krenek S; Petzoldt T; Berendonk TU PLoS One; 2012; 7(3):e30598. PubMed ID: 22427799 [TBL] [Abstract][Full Text] [Related]
24. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps. Boucher-Lalonde V; Currie DJ PLoS One; 2016; 11(11):e0166243. PubMed ID: 27855201 [TBL] [Abstract][Full Text] [Related]
25. Projecting kelp (Ecklonia radiata) gametophyte thermal adaptation and persistence under climate change. Veenhof RJ; Champion C; Dworjanyn SA; Schwoerbel J; Visch W; Coleman MA Ann Bot; 2024 Mar; 133(1):153-168. PubMed ID: 37665952 [TBL] [Abstract][Full Text] [Related]
26. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J; Kearney MR; Hoffmann AA Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [TBL] [Abstract][Full Text] [Related]
27. The response of two butterfly species to climatic variation at the edge of their range and the implications for poleward range shifts. Hellmann JJ; Pelini SL; Prior KM; Dzurisin JD Oecologia; 2008 Oct; 157(4):583-92. PubMed ID: 18648857 [TBL] [Abstract][Full Text] [Related]
28. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Valladares F; Matesanz S; Guilhaumon F; Araújo MB; Balaguer L; Benito-Garzón M; Cornwell W; Gianoli E; van Kleunen M; Naya DE; Nicotra AB; Poorter H; Zavala MA Ecol Lett; 2014 Nov; 17(11):1351-64. PubMed ID: 25205436 [TBL] [Abstract][Full Text] [Related]
29. Range position and climate sensitivity: The structure of among-population demographic responses to climatic variation. Amburgey SM; Miller DAW; Campbell Grant EH; Rittenhouse TAG; Benard MF; Richardson JL; Urban MC; Hughson W; Brand AB; Davis CJ; Hardin CR; Paton PWC; Raithel CJ; Relyea RA; Scott AF; Skelly DK; Skidds DE; Smith CK; Werner EE Glob Chang Biol; 2018 Jan; 24(1):439-454. PubMed ID: 28833972 [TBL] [Abstract][Full Text] [Related]
30. Directionality of recent bird distribution shifts and climate change in Great Britain. Gillings S; Balmer DE; Fuller RJ Glob Chang Biol; 2015 Jun; 21(6):2155-68. PubMed ID: 25482202 [TBL] [Abstract][Full Text] [Related]
31. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846 [TBL] [Abstract][Full Text] [Related]
32. The Climatic Variability Hypothesis and trade-offs in thermal performance in coastal and inland populations of Mimulus guttatus. Chiono A; Paul JR Evolution; 2023 Mar; 77(3):870-880. PubMed ID: 36637137 [TBL] [Abstract][Full Text] [Related]
33. Illuminating geographical patterns in species' range shifts. Grenouillet G; Comte L Glob Chang Biol; 2014 Oct; 20(10):3080-91. PubMed ID: 24616088 [TBL] [Abstract][Full Text] [Related]
34. The evolution of thermal performance in native and invasive populations of Querns A; Wooliver R; Vallejo-Marín M; Sheth SN Evol Lett; 2022 Apr; 6(2):136-148. PubMed ID: 35386831 [TBL] [Abstract][Full Text] [Related]
35. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity. Matías L; Linares JC; Sánchez-Miranda Á; Jump AS Glob Chang Biol; 2017 Oct; 23(10):4106-4116. PubMed ID: 28100041 [TBL] [Abstract][Full Text] [Related]
36. Demography of central and marginal populations of monkeyflowers (Mimulus cardinalis and M. lewisii). Angert AL Ecology; 2006 Aug; 87(8):2014-25. PubMed ID: 16937641 [TBL] [Abstract][Full Text] [Related]
37. Fitness homeostasis across an experimental water gradient predicts species' geographic range and climatic breadth. Pearse IS; McIntyre P; Cacho NI; Strauss SY Ecology; 2022 Dec; 103(12):e3827. PubMed ID: 35857374 [TBL] [Abstract][Full Text] [Related]
38. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants. Lemoine NP PLoS One; 2015; 10(2):e0118614. PubMed ID: 25705876 [TBL] [Abstract][Full Text] [Related]
39. Recent range shifts of moths, butterflies, and birds are driven by the breadth of their climatic niche. Hällfors MH; Heikkinen RK; Kuussaari M; Lehikoinen A; Luoto M; Pöyry J; Virkkala R; Saastamoinen M; Kujala H Evol Lett; 2024 Feb; 8(1):89-100. PubMed ID: 38370541 [TBL] [Abstract][Full Text] [Related]
40. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts. Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]