BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2170595)

  • 21. See-saw signal processing: reciprocal effects of stimulus deprivation on vasoactive intestinal peptide-stimulated adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate accumulation in rat pinealocytes.
    Chik CL; Ho AK
    Endocrinology; 1991 Feb; 128(2):850-6. PubMed ID: 1846590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vasoactive intestinal peptide potentiates and directly stimulates catecholamine secretion from rat adrenal chromaffin cells.
    Anderova M; Duchêne AD; Barbara JG; Takeda K
    Brain Res; 1998 Oct; 809(1):97-106. PubMed ID: 9795163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parasympathetic denervation increases responses to VIP in isolated rat parotid acini.
    McMillian MK; Talamo BR
    Peptides; 1989; 10(4):721-7. PubMed ID: 2479929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide activate hyperpolarization-activated cationic current and depolarize thalamocortical neurons in vitro.
    Sun QQ; Prince DA; Huguenard JR
    J Neurosci; 2003 Apr; 23(7):2751-8. PubMed ID: 12684461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide inhibit dendritic growth in cultured sympathetic neurons.
    Drahushuk K; Connell TD; Higgins D
    J Neurosci; 2002 Aug; 22(15):6560-9. PubMed ID: 12151535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vasoactive intestinal peptide induces differentiation and MAP kinase activation in PC12h cells.
    Okumura N; Miyatake Y; Takao T; Tamaru T; Nagai K; Okada M; Nakagawa H
    J Biochem; 1994 Feb; 115(2):304-8. PubMed ID: 8206880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. VIP modulates neuronal nicotinic acetylcholine receptor function by a cyclic AMP-dependent mechanism.
    Gurantz D; Harootunian AT; Tsien RY; Dionne VE; Margiotta JF
    J Neurosci; 1994 Jun; 14(6):3540-7. PubMed ID: 8207470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic regulation of vasoactive intestinal polypeptide expression by cyclic AMP and calcium in newborn but not adult rat sensory neurons in culture.
    Mulderry PK
    Neuroscience; 1993 Mar; 53(1):229-38. PubMed ID: 7682299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vasoactive intestinal peptide and peptide with N-terminal histidine and C-terminal isoleucine increase prolactin secretion in cultured rat pituitary cells (GH4C1) via a cAMP-dependent mechanism which involves transient elevation of intracellular Ca2+.
    Bjøro T; Ostberg BC; Sand O; Gordeladze J; Iversen JG; Torjesen PA; Gautvik KM; Haug E
    Mol Cell Endocrinol; 1987 Feb; 49(2-3):119-28. PubMed ID: 2435588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of dog atrial swelling-induced chloride current by cAMP: protein kinase A-dependent and -independent pathways.
    Du XY; Sorota S
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):111-22. PubMed ID: 9097937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GABA activity mediating cytosolic Ca2+ rises in developing neurons is modulated by cAMP-dependent signal transduction.
    Obrietan K; van den Pol AN
    J Neurosci; 1997 Jun; 17(12):4785-99. PubMed ID: 9169537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alpha 1-adrenergic potentiation of vasoactive intestinal peptide stimulation of rat pinealocyte adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate: evidence for a role of calcium and protein kinase-C.
    Chik CL; Ho AK; Klein DC
    Endocrinology; 1988 Feb; 122(2):702-8. PubMed ID: 2892667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Na-K-Cl cotransporter of avian salt gland. Phosphorylation in response to cAMP-dependent and calcium-dependent secretogogues.
    Torchia J; Lytle C; Pon DJ; Forbush B; Sen AK
    J Biol Chem; 1992 Dec; 267(35):25444-50. PubMed ID: 1281159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. cAMP elevation modulates physiological activity of pyloric neurons in the lobster stomatogastric ganglion.
    Flamm RE; Fickbohm D; Harris-Warrick RM
    J Neurophysiol; 1987 Dec; 58(6):1370-86. PubMed ID: 2449516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of verapamil on the cyclic AMP-mediated pathway for amylase secretion in rat pancreatic acini.
    Slimak GG; Stark HA; Egan JJ; Jensen RT; Gardner JD
    Pancreas; 1993 Mar; 8(2):212-9. PubMed ID: 7681580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclic adenosine monophosphate regulates vasoactive intestinal polypeptide and enkephalin biosynthesis in cultured bovine chromaffin cells.
    Eiden LE; Hotchkiss AJ
    Neuropeptides; 1983 Dec; 4(1):1-9. PubMed ID: 6199686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vasoactive intestinal polypeptide and alpha 2-adrenoceptor agonists regulate adenosine 3',5'-monophosphate accumulation and melatonin release in chick pineal cell cultures.
    Pratt BL; Takahashi JS
    Endocrinology; 1989 Nov; 125(5):2375-84. PubMed ID: 2477231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of peptides of the secretin-glucagon family and cyclic nucleotides on tyrosine hydroxylase activity in sympathetic nerve endings.
    Schwarzschild MA; Zigmond RE
    J Neurochem; 1991 Feb; 56(2):400-6. PubMed ID: 1703218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vasoactive intestinal peptide induces tyrosine phosphorylation in PC12h cells.
    Okumura N; Okada M; Nagai K; Nakagawa H
    J Biochem; 1994 Aug; 116(2):341-5. PubMed ID: 7822252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of vasoactive intestinal peptide receptor subtypes in the lacrimal gland and their signal-transducing components.
    Hodges RR; Zoukhri D; Sergheraert C; Zieske JD; Dartt DA
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):610-9. PubMed ID: 9071214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.