These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21706115)

  • 1. Controlled growth and catalytic activity of gold monolayer protected clusters in presence of borohydride salts.
    Dasog M; Hou W; Scott RW
    Chem Commun (Camb); 2011 Aug; 47(30):8569-71. PubMed ID: 21706115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium borohydride stabilizes very active gold nanoparticle catalysts.
    Deraedt C; Salmon L; Gatard S; Ciganda R; Hernandez R; Ruiz J; Astruc D
    Chem Commun (Camb); 2014 Nov; 50(91):14194-6. PubMed ID: 25283248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst.
    Chang YC; Chen DH
    J Hazard Mater; 2009 Jun; 165(1-3):664-9. PubMed ID: 19022566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4.
    Lin C; Tao K; Hua D; Ma Z; Zhou S
    Molecules; 2013 Oct; 18(10):12609-20. PubMed ID: 24126378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis of gold nanoparticles within lysozyme single crystals.
    Wei H; Lu Y
    Chem Asian J; 2012 Apr; 7(4):680-3. PubMed ID: 22290848
    [No Abstract]   [Full Text] [Related]  

  • 6. Cucurbit[7]uril as a tool in the green synthesis of gold nanoparticles.
    Premkumar T; Geckeler KE
    Chem Asian J; 2010 Dec; 5(12):2468-76. PubMed ID: 20848633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water- and organo-dispersible gold nanoparticles supported by using ammonium salts of hyperbranched polystyrene: preparation and catalysis.
    Gao L; Nishikata T; Kojima K; Chikama K; Nagashima H
    Chem Asian J; 2013 Dec; 8(12):3152-63. PubMed ID: 24115377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction mechanism governing formation of 1,3-bis(diphenylphosphino)propane-protected gold nanoclusters.
    Hudgens JW; Pettibone JM; Senftle TP; Bratton RN
    Inorg Chem; 2011 Oct; 50(20):10178-89. PubMed ID: 21928777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of self-supporting gold microstructures with three-dimensional morphologies by direct replication of diatom templates.
    Yu Y; Addai-Mensah J; Losic D
    Langmuir; 2010 Sep; 26(17):14068-72. PubMed ID: 20666460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol.
    Narayanan KB; Sakthivel N
    J Hazard Mater; 2011 May; 189(1-2):519-25. PubMed ID: 21420237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.
    Zhu N; Cao Y; Shi C; Wu P; Ma H
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7627-38. PubMed ID: 26739993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity.
    Ayaz Ahmed KB; Subramanian S; Sivasubramanian A; Veerappan G; Veerappan A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():54-8. PubMed ID: 24762573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity.
    Huang J; Vongehr S; Tang S; Lu H; Shen J; Meng X
    Langmuir; 2009 Oct; 25(19):11890-6. PubMed ID: 19788231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and multiple reuse of eccentric Au@TiO2 nanostructures as catalysts.
    Seh ZW; Liu S; Zhang SY; Shah KW; Han MY
    Chem Commun (Camb); 2011 Jun; 47(23):6689-91. PubMed ID: 21562662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One step to detect the latent fingermarks with gold nanoparticles.
    Gao D; Li F; Song J; Xu X; Zhang Q; Niu L
    Talanta; 2009 Dec; 80(2):479-83. PubMed ID: 19836507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductant-directed formation of PS-PAMAM-supported gold nanoparticles for use as highly active and recyclable catalysts for the aerobic oxidation of alcohols and the homocoupling of phenylboronic acids.
    Zheng J; Lin S; Zhu X; Jiang B; Yang Z; Pan Z
    Chem Commun (Camb); 2012 Jun; 48(50):6235-7. PubMed ID: 22595867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast catalytic and electrocatalytic oxidation of sodium borohydride on palladium nanoparticles and its application to ultrasensitive DNA detection.
    Das J; Kim H; Jo K; Park KH; Jon S; Lee K; Yang H
    Chem Commun (Camb); 2009 Nov; (42):6394-6. PubMed ID: 19841788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and spectroscopic characterization of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.