These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 2170630)
1. Fast gating kinetics of the slow Ca2+ current in cut skeletal muscle fibres of the frog. Feldmeyer D; Melzer W; Pohl B; Zöllner P J Physiol; 1990 Jun; 425():347-67. PubMed ID: 2170630 [TBL] [Abstract][Full Text] [Related]
2. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating. Ma J; González A; Chen R J Gen Physiol; 1996 Sep; 108(3):221-32. PubMed ID: 8882865 [TBL] [Abstract][Full Text] [Related]
3. Calcium current reactivation after flash photolysis of nifedipine in skeletal muscle fibres of the frog. Feldmeyer D; Zöllner P; Pohl B; Melzer W J Physiol; 1995 Aug; 487(1):51-6. PubMed ID: 7473258 [TBL] [Abstract][Full Text] [Related]
4. Membrane charge moved at contraction thresholds in skeletal muscle fibres. Horowicz P; Schneider MF J Physiol; 1981 May; 314():595-633. PubMed ID: 6975815 [TBL] [Abstract][Full Text] [Related]
5. The effect of the benzothiazepine diltiazem on force and Ca2+ current in isolated frog skeletal muscle fibres. Böhle T J Physiol; 1992 Jan; 445():303-18. PubMed ID: 1323667 [TBL] [Abstract][Full Text] [Related]
6. Modulation of calcium current gating in frog skeletal muscle by conditioning depolarization. Feldmeyer D; Melzer W; Pohl B; Zöllner P J Physiol; 1992 Nov; 457():639-53. PubMed ID: 1338468 [TBL] [Abstract][Full Text] [Related]
7. Effects of gallopamil on calcium release and intramembrane charge movements in frog skeletal muscle fibres. Feldmeyer D; Melzer W; Pohl B J Physiol; 1990 Feb; 421():343-62. PubMed ID: 2348396 [TBL] [Abstract][Full Text] [Related]
8. Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling. Brum G; Fitts R; Pizarro G; Ríos E J Physiol; 1988 Apr; 398():475-505. PubMed ID: 3260626 [TBL] [Abstract][Full Text] [Related]
9. Calcium transients studied under voltage-clamp control in frog twitch muscle fibres. Miledi R; Parker I; Zhu PH J Physiol; 1983 Jul; 340():649-80. PubMed ID: 6604154 [TBL] [Abstract][Full Text] [Related]
10. Relations between the inactivation of sodium channels and the immobilization of gating charge in frog myelinated nerve. Nonner W J Physiol; 1980 Feb; 299():573-603. PubMed ID: 6247484 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of the slow calcium current in twitch skeletal muscle fibres of the frog. Francini F; Pizza L; Traina G J Physiol; 1992 Mar; 448():633-53. PubMed ID: 1593482 [TBL] [Abstract][Full Text] [Related]
13. Mechanical activation in slow and twitch skeletal muscle fibres of the frog. Gilly WF; Hui CS J Physiol; 1980 Apr; 301():137-56. PubMed ID: 6967970 [TBL] [Abstract][Full Text] [Related]
14. Role of calcium permeation in dihydropyridine receptor function. Insights into channel gating and excitation-contraction coupling. Dirksen RT; Beam KG J Gen Physiol; 1999 Sep; 114(3):393-403. PubMed ID: 10469729 [TBL] [Abstract][Full Text] [Related]
15. Effects of caffeine on calcium release from the sarcoplasmic reticulum in frog skeletal muscle fibres. Klein MG; Simon BJ; Schneider MF J Physiol; 1990 Jun; 425():599-626. PubMed ID: 2213590 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of calcium release from the sarcoplasmic reticulum in frog skeletal muscle. Schneider MF; Simon BJ J Physiol; 1988 Nov; 405():727-45. PubMed ID: 2855645 [TBL] [Abstract][Full Text] [Related]
17. Voltage dependence of membrane charge movement and calcium release in frog skeletal muscle fibres. Rakowski RF; Best PM; James-Kracke MR J Muscle Res Cell Motil; 1985 Aug; 6(4):403-33. PubMed ID: 3877737 [TBL] [Abstract][Full Text] [Related]
18. Intramembrane charge movement and calcium release in frog skeletal muscle. Melzer W; Schneider MF; Simon BJ; Szucs G J Physiol; 1986 Apr; 373():481-511. PubMed ID: 3489092 [TBL] [Abstract][Full Text] [Related]
19. Two classes of gating current from L-type Ca channels in guinea pig ventricular myocytes. Shirokov R; Levis R; Shirokova N; Ríos E J Gen Physiol; 1992 Jun; 99(6):863-95. PubMed ID: 1322450 [TBL] [Abstract][Full Text] [Related]