These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Intervertebral disc changes in an animal model representing altered mechanics in scoliosis. Stokes IA; McBride CA; Aronsson DD Stud Health Technol Inform; 2008; 140():273-7. PubMed ID: 18810036 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Effects of Angulation, Compression, and Reduced Mobility on Annulus Fibrosis in a Model of Altered Mechanical Environment in Scoliosis. Stokes IA; McBride CA; Aronsson DD; Roughley PJ Spine Deform; 2013 May; 1(3):161-170. PubMed ID: 27927288 [TBL] [Abstract][Full Text] [Related]
4. Intervertebral disc adaptation to wedging deformation. Stokes IA; Aronsson DD; Clark KC; Roemhildt ML Stud Health Technol Inform; 2006; 123():182-7. PubMed ID: 17108424 [TBL] [Abstract][Full Text] [Related]
5. Compression-induced changes in intervertebral disc properties in a rat tail model. Iatridis JC; Mente PL; Stokes IA; Aronsson DD; Alini M Spine (Phila Pa 1976); 1999 May; 24(10):996-1002. PubMed ID: 10332792 [TBL] [Abstract][Full Text] [Related]
6. Effect of Static Compression Loads on Intervertebral Disc: An in Vivo Bent Rat Tail Model. Xia W; Zhang LL; Mo J; Zhang W; Li HT; Luo ZP; Yang HL Orthop Surg; 2018 May; 10(2):134-143. PubMed ID: 29770581 [TBL] [Abstract][Full Text] [Related]
7. Rotational hypermobility of disc wedging using kinematic CT: preliminary study to investigate the instability of discs in degenerated scoliosis in the lumbar spine. Ohtori S; Yamashita M; Inoue G; Yamauchi K; Koshi T; Suzuki M; Takaso M; Orita S; Eguchi Y; Ochiai N; Kishida S; Mimura M; Yanagawa N; Ishikawa T; Arai G; Miyagi M; Kamoda H; Aoki Y; Kuniyoshi K; Nakamura J; Takahashi K Eur Spine J; 2010 Jun; 19(6):989-94. PubMed ID: 20140464 [TBL] [Abstract][Full Text] [Related]
8. Stable mechanical environments created by a low-tension traction device is beneficial for the regeneration and repair of degenerated intervertebral discs. Guo JB; Che YJ; Hou JJ; Liang T; Zhang W; Lu Y; Yang HL; Luo ZP Spine J; 2020 Sep; 20(9):1503-1516. PubMed ID: 32305426 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical Modeling of Spine Flexibility and Its Relationship to Spinal Range of Motion and Idiopathic Scoliosis. Wren TAL; Ponrartana S; Poorghasamians E; Moreau S; Aggabao PC; Zaslow TL; Edison BR; Gilsanz V Spine Deform; 2017 Jul; 5(4):225-230. PubMed ID: 28622896 [TBL] [Abstract][Full Text] [Related]
10. Analysis of idiopathic scoliosis progression by using numerical simulation. Drevelle X; Lafon Y; Ebermeyer E; Courtois I; Dubousset J; Skalli W Spine (Phila Pa 1976); 2010 May; 35(10):E407-12. PubMed ID: 20393388 [TBL] [Abstract][Full Text] [Related]
11. Controlled immobilization-traction based on intervertebral stability is conducive to the regeneration or repair of the degenerative disc: an in vivo study on the rat coccygeal model. Che YJ; Guo JB; Liang T; Chen X; Zhang W; Yang HL; Luo ZP Spine J; 2019 May; 19(5):920-930. PubMed ID: 30399448 [TBL] [Abstract][Full Text] [Related]
12. Low energy extracorporeal shock wave therapy combined with low tension traction can better reshape the microenvironment in degenerated intervertebral disc regeneration and repair. Che YJ; Hou JJ; Guo JB; Liang T; Zhang W; Lu Y; Yang HL; Hao YF; Luo ZP Spine J; 2021 Jan; 21(1):160-177. PubMed ID: 32800896 [TBL] [Abstract][Full Text] [Related]
13. Influence of Complex Loading Conditions on Intervertebral Disc Failure. Berger-Roscher N; Casaroli G; Rasche V; Villa T; Galbusera F; Wilke HJ Spine (Phila Pa 1976); 2017 Jan; 42(2):E78-E85. PubMed ID: 27187053 [TBL] [Abstract][Full Text] [Related]
14. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Little JP; Adam CJ Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657 [TBL] [Abstract][Full Text] [Related]
15. Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model. Barbir A; Godburn KE; Michalek AJ; Lai A; Monsey RD; Iatridis JC Spine (Phila Pa 1976); 2011 Apr; 36(8):607-14. PubMed ID: 20736890 [TBL] [Abstract][Full Text] [Related]
16. Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load. Espinoza Orías AA; Malhotra NR; Elliott DM Spine J; 2009 Mar; 9(3):204-9. PubMed ID: 18495544 [TBL] [Abstract][Full Text] [Related]
17. In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. Wuertz K; Godburn K; MacLean JJ; Barbir A; Donnelly JS; Roughley PJ; Alini M; Iatridis JC J Orthop Res; 2009 Sep; 27(9):1235-42. PubMed ID: 19274755 [TBL] [Abstract][Full Text] [Related]
18. Effect of Asymmetric Tension on Biomechanics and Metabolism of Vertebral Epiphyseal Plate in a Rodent Model of Scoliosis. Li QY; Zhong GB; Liu ZD; Lao LF Orthop Surg; 2017 Aug; 9(3):311-318. PubMed ID: 28960815 [TBL] [Abstract][Full Text] [Related]
19. The effect of static in vivo bending on the murine intervertebral disc. Court C; Colliou OK; Chin JR; Liebenberg E; Bradford DS; Lotz JC Spine J; 2001; 1(4):239-45. PubMed ID: 14588327 [TBL] [Abstract][Full Text] [Related]
20. ISSLS prize winner: a study of effects of in vivo mechanical forces on human lumbar discs with scoliotic disc as a biological model: results from serial postcontrast diffusion studies, histopathology and biochemical analysis of twenty-one human lumbar scoliotic discs. Rajasekaran S; Vidyadhara S; Subbiah M; Kamath V; Karunanithi R; Shetty AP; Venkateswaran K; Babu M; Meenakshi J Spine (Phila Pa 1976); 2010 Oct; 35(21):1930-43. PubMed ID: 20838264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]