BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21706372)

  • 1. Flexible bacterial strains that oxidize arsenite in anoxic or aerobic conditions and utilize hydrogen or acetate as alternative electron donors.
    Rodríguez-Freire L; Sun W; Sierra-Alvarez R; Field JA
    Biodegradation; 2012 Feb; 23(1):133-43. PubMed ID: 21706372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures.
    Sun W; Sierra-Alvarez R; Fernandez N; Sanz JL; Amils R; Legatzki A; Maier RM; Field JA
    FEMS Microbiol Ecol; 2009 Apr; 68(1):72-85. PubMed ID: 19187211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic oxidation of arsenite linked to chlorate reduction.
    Sun W; Sierra-Alvarez R; Milner L; Field JA
    Appl Environ Microbiol; 2010 Oct; 76(20):6804-11. PubMed ID: 20729322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.
    Fazi S; Crognale S; Casentini B; Amalfitano S; Lotti F; Rossetti S
    Microb Ecol; 2016 Jul; 72(1):25-35. PubMed ID: 27090902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor.
    Carlström CI; Loutey D; Bauer S; Clark IC; Rohde RA; Iavarone AT; Lucas L; Coates JD
    mBio; 2015 Mar; 6(2):. PubMed ID: 25805732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor.
    Nguyen VK; Tran HT; Park Y; Yu J; Lee T
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):857-868. PubMed ID: 28185099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental microbes can speciate and cycle arsenic.
    Rhine ED; Garcia-Dominguez E; Phelps CD; Young LY
    Environ Sci Technol; 2005 Dec; 39(24):9569-73. PubMed ID: 16475337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible biological arsenite oxidation utilizing NO
    Wang J; Wan J; Wu Z; Li H; Li H; Dagot C; Wang Y
    Chemosphere; 2017 Jul; 178():136-142. PubMed ID: 28324835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen formation by an arsenate-reducing Pseudomonas putida, isolated from arsenic-contaminated groundwater in West Bengal, India.
    Freikowski D; Winter J; Gallert C
    Appl Microbiol Biotechnol; 2010 Dec; 88(6):1363-71. PubMed ID: 20821202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.
    Cui J; Du J; Tian H; Chan T; Jing C
    Chemosphere; 2018 Apr; 196():223-230. PubMed ID: 29304460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria.
    Klueglein N; Zeitvogel F; Stierhof YD; Floetenmeyer M; Konhauser KO; Kappler A; Obst M
    Appl Environ Microbiol; 2014 Feb; 80(3):1051-61. PubMed ID: 24271182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of denitrification on arsenite oxidation and arsenic mobility in an anoxic sediment column model with activated alumina.
    Sun W; Sierra-Alvarez R; Field JA
    Biotechnol Bioeng; 2010 Dec; 107(5):786-94. PubMed ID: 20662039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1.
    Oremland RS; Hoeft SE; Santini JM; Bano N; Hollibaugh RA; Hollibaugh JT
    Appl Environ Microbiol; 2002 Oct; 68(10):4795-802. PubMed ID: 12324322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenite oxidation and arsenate respiration by a new Thermus isolate.
    Gihring TM; Banfield JF
    FEMS Microbiol Lett; 2001 Nov; 204(2):335-40. PubMed ID: 11731145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microbial arsenic cycle in a salt-saturated, extreme environment.
    Oremland RS; Kulp TR; Blum JS; Hoeft SE; Baesman S; Miller LG; Stolz JF
    Science; 2005 May; 308(5726):1305-8. PubMed ID: 15919992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrite Accumulation Is Required for Microbial Anaerobic Iron Oxidation, but Not for Arsenite Oxidation, in Two Heterotrophic Denitrifiers.
    Zhang J; Chai CW; ThomasArrigo LK; Zhao SC; Kretzschmar R; Zhao FJ
    Environ Sci Technol; 2020 Apr; 54(7):4036-4045. PubMed ID: 32131590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils.
    Zhang J; Zhao S; Xu Y; Zhou W; Huang K; Tang Z; Zhao FJ
    Environ Sci Technol; 2017 Apr; 51(8):4377-4386. PubMed ID: 28358982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.