These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21706539)

  • 41. Endothelial cell migration on surface-density gradients of fibronectin, VEGF, or both proteins.
    Liu L; Ratner BD; Sage EH; Jiang S
    Langmuir; 2007 Oct; 23(22):11168-73. PubMed ID: 17892312
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formation of poly(methyl methacrylate) thin films onto wool fiber surfaces by vapor deposition polymerization.
    Hassan MM; McLaughlin JR
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1548-55. PubMed ID: 23406279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface engineering of poly(dimethylsiloxane) microfluidic devices using transition metal sol-gel chemistry.
    Roman GT; Culbertson CT
    Langmuir; 2006 Apr; 22(9):4445-51. PubMed ID: 16618201
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal Barrier Stability and Wear Behavior of CVD Deposited Aluminide Coatings for MAR 247 Nickel Superalloy.
    Kukla D; Kopec M; Kowalewski ZL; Politis DJ; Jóźwiak S; Senderowski C
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32883042
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds.
    Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M
    Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of thermoresponsive polymer gradients for study of cell adhesion and detachment.
    Li L; Zhu Y; Li B; Gao C
    Langmuir; 2008 Dec; 24(23):13632-9. PubMed ID: 18980353
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Micro- and nano-surface structures based on vapor-deposited polymers.
    Chen HY
    Beilstein J Nanotechnol; 2017; 8():1366-1374. PubMed ID: 28900592
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanotopographical control of surfaces using chemical vapor deposition processes.
    Koenig M; Lahann J
    Beilstein J Nanotechnol; 2017; 8():1250-1256. PubMed ID: 28685125
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reactive Vapor Deposition of Conjugated Polymer Films on Arbitrary Substrates.
    Cheng N; Andrew TL
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364260
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Length scale heterogeneity in lateral gradients of poly(N-isopropylacrylamide) polymer brushes prepared by surface-initiated atom transfer radical polymerization coupled with in-plane electrochemical potential gradients.
    Wang X; Tu H; Braun PV; Bohn PW
    Langmuir; 2006 Jan; 22(2):817-23. PubMed ID: 16401136
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
    Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X
    J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of polymer nanoparticles via vapor phase deposition onto liquid substrates.
    Haller PD; Gupta M
    Macromol Rapid Commun; 2014 Dec; 35(23):2000-4. PubMed ID: 25269429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determining compositional profiles within conducting polymer films following reaction with vapor phase reagents.
    Glidle A; Pearson PE; Smith EL; Cooper JM; Cubitt R; Dalgliesh RM; Hillman AR; Ryder KS
    J Phys Chem B; 2007 Apr; 111(16):4043-53. PubMed ID: 17402770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CoOx thin film deposited by CVD as efficient water oxidation catalyst: change of oxidation state in XPS and its correlation to electrochemical activity.
    Weidler N; Paulus S; Schuch J; Klett J; Hoch S; Stenner P; Maljusch A; Brötz J; Wittich C; Kaiser B; Jaegermann W
    Phys Chem Chem Phys; 2016 Apr; 18(16):10708-18. PubMed ID: 26694730
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reactive surface coatings based on polysilsesquioxanes: defined adjustment of surface wettability.
    Kessler D; Theato P
    Langmuir; 2009 Dec; 25(24):14200-6. PubMed ID: 19371043
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human serum albumin adsorption onto a-SiC:H and a-C:H thin films deposited by plasma enhanced chemical vapor deposition.
    Auditore A; Satriano C; Coscia U; Ambrosone G; Parisi V; Marletta G
    Biomol Eng; 2002 Aug; 19(2-6):85-90. PubMed ID: 12202167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of substrate storage conditions on the stability of "Smart" films used for mammalian cell applications.
    Bluestein BM; Reed JA; Canavan HE
    Appl Surf Sci; 2017 Jan; 392():950-959. PubMed ID: 29081564
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The composition and structure of Pd-Au surfaces.
    Yi CW; Luo K; Wei T; Goodman DW
    J Phys Chem B; 2005 Oct; 109(39):18535-40. PubMed ID: 16853387
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reactive polymer coatings: a first step toward surface engineering of microfluidic devices.
    Lahann J; Balcells M; Lu H; Rodon T; Jensen KF; Langer R
    Anal Chem; 2003 May; 75(9):2117-22. PubMed ID: 12720350
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Poly(L-lysine)-grafted-poly(ethylene glycol)-based surface-chemical gradients. Preparation, characterization, and first applications.
    Morgenthaler S; Zink C; Städler B; Vörös J; Lee S; Spencer ND; Tosatti SG
    Biointerphases; 2006 Dec; 1(4):156-65. PubMed ID: 20408629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.