These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21707050)

  • 1. Effect of the F610A mutation on substrate extrusion in the AcrB transporter: explanation and rationale by molecular dynamics simulations.
    Vargiu AV; Collu F; Schulz R; Pos KM; Zacharias M; Kleinekathöfer U; Ruggerone P
    J Am Chem Soc; 2011 Jul; 133(28):10704-7. PubMed ID: 21707050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli.
    Soparkar K; Kinana AD; Weeks JW; Morrison KD; Nikaido H; Misra R
    J Bacteriol; 2015 Oct; 197(20):3255-64. PubMed ID: 26240069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of water during the extrusion of substrates by the efflux transporter AcrB.
    Schulz R; Vargiu AV; Ruggerone P; Kleinekathöfer U
    J Phys Chem B; 2011 Jun; 115(25):8278-87. PubMed ID: 21657235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional rotation of the transporter AcrB: insights into drug extrusion from simulations.
    Schulz R; Vargiu AV; Collu F; Kleinekathöfer U; Ruggerone P
    PLoS Comput Biol; 2010 Jun; 6(6):e1000806. PubMed ID: 20548943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unidirectional peristaltic movement in multisite drug binding pockets of AcrB from molecular dynamics simulations.
    Feng Z; Hou T; Li Y
    Mol Biosyst; 2012 Oct; 8(10):2699-709. PubMed ID: 22825052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of the efflux pump AcrB in complex with bile acid.
    Drew D; Klepsch MM; Newstead S; Flaig R; De Gier JW; Iwata S; Beis K
    Mol Membr Biol; 2008 Dec; 25(8):677-82. PubMed ID: 19023693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB.
    Bohnert JA; Schuster S; Seeger MA; Fähnrich E; Pos KM; Kern WV
    J Bacteriol; 2008 Dec; 190(24):8225-9. PubMed ID: 18849422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and Transport of Carboxylated Drugs by the Multidrug Transporter AcrB.
    Tam HK; Malviya VN; Foong WE; Herrmann A; Malloci G; Ruggerone P; Vargiu AV; Pos KM
    J Mol Biol; 2020 Feb; 432(4):861-877. PubMed ID: 31881208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking.
    Tamura N; Murakami S; Oyama Y; Ishiguro M; Yamaguchi A
    Biochemistry; 2005 Aug; 44(33):11115-21. PubMed ID: 16101295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic network model-based normal mode analysis reveals the conformational couplings in the tripartite AcrAB-TolC multidrug efflux complex.
    Wang B; Weng J; Fan K; Wang W
    Proteins; 2011 Oct; 79(10):2936-45. PubMed ID: 21905116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional aspects of the multidrug efflux pump AcrB.
    Eicher T; Brandstätter L; Pos KM
    Biol Chem; 2009 Aug; 390(8):693-9. PubMed ID: 19453279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity.
    Blair JM; Bavro VN; Ricci V; Modi N; Cacciotto P; Kleinekathӧfer U; Ruggerone P; Vargiu AV; Baylay AJ; Smith HE; Brandon Y; Galloway D; Piddock LJ
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3511-6. PubMed ID: 25737552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the Inhibitory Mechanism of D13-9001 to the Multidrug Transporter AcrB through Molecular Dynamics Simulations.
    Zuo Z; Weng J; Wang W
    J Phys Chem B; 2016 Mar; 120(9):2145-54. PubMed ID: 26900716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system.
    Touzé T; Eswaran J; Bokma E; Koronakis E; Hughes C; Koronakis V
    Mol Microbiol; 2004 Jul; 53(2):697-706. PubMed ID: 15228545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic assessment of the role of AcrB β-hairpins in the assembly of the TolC-AcrAB multidrug efflux pump of Escherichia coli.
    Weeks JW; Bavro VN; Misra R
    Mol Microbiol; 2014 Mar; 91(5):965-75. PubMed ID: 24386963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of a conserved residue R780 in Escherichia coli multidrug transporter AcrB.
    Yu L; Lu W; Ye C; Wang Z; Zhong M; Chai Q; Sheetz M; Wei Y
    Biochemistry; 2013 Oct; 52(39):6790-6. PubMed ID: 24007302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of site-directed mutations in multidrug efflux pump AcrB examined by quantitative efflux assays.
    Kinana AD; Vargiu AV; Nikaido H
    Biochem Biophys Res Commun; 2016 Nov; 480(4):552-557. PubMed ID: 27789287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constant pH Molecular Dynamics Reveals How Proton Release Drives the Conformational Transition of a Transmembrane Efflux Pump.
    Yue Z; Chen W; Zgurskaya HI; Shen J
    J Chem Theory Comput; 2017 Dec; 13(12):6405-6414. PubMed ID: 29117682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB.
    Seeger MA; von Ballmoos C; Eicher T; Brandstätter L; Verrey F; Diederichs K; Pos KM
    Nat Struct Mol Biol; 2008 Feb; 15(2):199-205. PubMed ID: 18223659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism.
    Murakami S; Nakashima R; Yamashita E; Matsumoto T; Yamaguchi A
    Nature; 2006 Sep; 443(7108):173-9. PubMed ID: 16915237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.