These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21707058)

  • 1. A simple analytical method for dhurrin content evaluation in cyanogenic plants for their utilization in fodder and biofumigation.
    De Nicola GR; Leoni O; Malaguti L; Bernardi R; Lazzeri L
    J Agric Food Chem; 2011 Aug; 59(15):8065-9. PubMed ID: 21707058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum.
    Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN
    J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production.
    Blomstedt CK; Gleadow RM; O'Donnell N; Naur P; Jensen K; Laursen T; Olsen CE; Stuart P; Hamill JD; Møller BL; Neale AD
    Plant Biotechnol J; 2012 Jan; 10(1):54-66. PubMed ID: 21880107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of gas chromotography, spectrophotometry and near infrared spectroscopy to quantify prussic acid potential in forages.
    Goff BM; Moore KJ; Fales SL; Pedersen JF
    J Sci Food Agric; 2011 Jun; 91(8):1523-6. PubMed ID: 21541942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum.
    O'Donnell NH; Møller BL; Neale AD; Hamill JD; Blomstedt CK; Gleadow RM
    Plant Physiol Biochem; 2013 Dec; 73():83-92. PubMed ID: 24080394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated sorghum.
    Cowan MF; Blomstedt CK; Møller BL; Henry RJ; Gleadow RM
    Phytochemistry; 2021 Apr; 184():112645. PubMed ID: 33482417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench).
    Blomstedt CK; O'Donnell NH; Bjarnholt N; Neale AD; Hamill JD; Møller BL; Gleadow RM
    Plant Cell Physiol; 2016 Feb; 57(2):373-86. PubMed ID: 26493517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-d-Glucosidase as "key enzyme" for sorghum cyanogenic glucoside (dhurrin) removal and beer bioflavouring.
    Tokpohozin SE; Fischer S; Sacher B; Becker T
    Food Chem Toxicol; 2016 Nov; 97():217-223. PubMed ID: 27623178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dhurrin-6'-glucoside, a cyanogenic diglucoside from Sorghum bicolor.
    Selmar D; Irandoost Z; Wray V
    Phytochemistry; 1996 Oct; 43(3):569-72. PubMed ID: 8987580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dhurrin increases but does not mitigate oxidative stress in droughted Sorghum bicolor.
    Sohail MN; Quinn AA; Blomstedt CK; Gleadow RM
    Planta; 2022 Feb; 255(4):74. PubMed ID: 35226202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a flow injection surface-enhanced Raman scatter (FI-SERS) method for determination of cyanide.
    Thygesen LG; Jørgensen K; Møller BL; Engelsen SB
    Appl Spectrosc; 2004 Feb; 58(2):212-7. PubMed ID: 15000716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanogenesis in the
    Cowan M; Møller BL; Norton S; Knudsen C; Crocoll C; Furtado A; Henry R; Blomstedt C; Gleadow RM
    Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of beta-glucosidases with high specificity for the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) moench seedlings.
    Hösel W; Tober I; Eklund SH; Conn EE
    Arch Biochem Biophys; 1987 Jan; 252(1):152-62. PubMed ID: 3101594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots.
    Franks TK; Powell KS; Choimes S; Marsh E; Iocco P; Sinclair BJ; Ford CM; van Heeswijck R
    Transgenic Res; 2006 Apr; 15(2):181-95. PubMed ID: 16604459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants.
    Busk PK; Møller BL
    Plant Physiol; 2002 Jul; 129(3):1222-31. PubMed ID: 12114576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin.
    Bak S; Kahn RA; Nielsen HL; Moller BL; Halkier BA
    Plant Mol Biol; 1998 Feb; 36(3):393-405. PubMed ID: 9484480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis.
    Bak S; Olsen CE; Halkier BA; Møller BL
    Plant Physiol; 2000 Aug; 123(4):1437-48. PubMed ID: 10938360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil.
    Johansen H; Rasmussen LH; Olsen CE; Bruun Hansen HC
    Chemosphere; 2007 Feb; 67(2):259-66. PubMed ID: 17126881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of dhurrin pathway gene expression during Sorghum bicolor development.
    Gleadow RM; McKinley BA; Blomstedt CK; Lamb AC; Møller BL; Mullet JE
    Planta; 2021 Nov; 254(6):119. PubMed ID: 34762174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chromosome-scale genome sequence of sudangrass (Sorghum sudanense) highlights the genome evolution and regulation of dhurrin biosynthesis.
    Li J; Wang L; Bible PW; Tu W; Zheng J; Jin P; Liu Y; Du J; Zheng J; Wang YH; Zhan Q
    Theor Appl Genet; 2023 Mar; 136(3):60. PubMed ID: 36912984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.