BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21707101)

  • 1. Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli.
    Dekishima Y; Lan EI; Shen CR; Cho KM; Liao JC
    J Am Chem Soc; 2011 Aug; 133(30):11399-401. PubMed ID: 21707101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [1-butanol synthesis by Escherichia coli cells through butyryl-CoA formation by heterologous enzymes of clostridia and native enzymes of fatty acid beta-oxidation].
    Gulevich AIu; Skorokhodova AIu; Morzhakova AA; Antonova SV; Sukhozhenko AV; Shakulov RS; Debabov VG
    Prikl Biokhim Mikrobiol; 2012; 48(4):383-8. PubMed ID: 23035570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cloning and expression of key genes of butanol synthetic pathway in Escherichia coli].
    Zhang Y; Zhou P; Wang P; Xie J; Ye Q
    Wei Sheng Wu Xue Bao; 2012 May; 52(5):588-93. PubMed ID: 22803344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a homobutanol fermentation pathway in Escherichia coli EG03.
    Garza E; Zhao J; Wang Y; Wang J; Iverson A; Manow R; Finan C; Zhou S
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1101-7. PubMed ID: 22776992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes.
    Loder AJ; Zeldes BM; Garrison GD; Lipscomb GL; Adams MW; Kelly RM
    Appl Environ Microbiol; 2015 Oct; 81(20):7187-200. PubMed ID: 26253677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli.
    Inui M; Suda M; Kimura S; Yasuda K; Suzuki H; Toda H; Yamamoto S; Okino S; Suzuki N; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1305-16. PubMed ID: 18060402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols.
    Machado HB; Dekishima Y; Luo H; Lan EI; Liao JC
    Metab Eng; 2012 Sep; 14(5):504-11. PubMed ID: 22819734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase.
    Berzin V; Tyurin M; Kiriukhin M
    Appl Biochem Biotechnol; 2013 Feb; 169(3):950-9. PubMed ID: 23292245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering coenzyme A-dependent pathway from Clostridium saccharobutylicum in Escherichia coli for butanol production.
    Ye W; Li J; Han R; Xu G; Dong J; Ni Y
    Bioresour Technol; 2017 Jul; 235():140-148. PubMed ID: 28365341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum.
    Ma C; Kojima K; Xu N; Mobley J; Zhou L; Yang ST; Liu XM
    J Biotechnol; 2015 Jan; 193():108-19. PubMed ID: 25449011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli.
    Chen SK; Chin WC; Tsuge K; Huang CC; Li SY
    Bioresour Technol; 2013 Oct; 145():204-9. PubMed ID: 23453982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing n-butanol production with
    Schadeweg V; Boles E
    Biotechnol Biofuels; 2016; 9():257. PubMed ID: 27924150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli.
    Shen CR; Lan EI; Dekishima Y; Baez A; Cho KM; Liao JC
    Appl Environ Microbiol; 2011 May; 77(9):2905-15. PubMed ID: 21398484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli.
    Kataoka N; Vangnai AS; Pongtharangkul T; Tajima T; Yakushi T; Matsushita K; Kato J
    J Biotechnol; 2015 Jun; 204():25-32. PubMed ID: 25865277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in metabolically engineered Escherichia coli.
    Lee SH; Park SJ; Lee SY; Hong SH
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):633-41. PubMed ID: 18461320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli.
    Ohtake T; Pontrelli S; Laviña WA; Liao JC; Putri SP; Fukusaki E
    Metab Eng; 2017 May; 41():135-143. PubMed ID: 28400330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis.
    Berezina OV; Zakharova NV; Brandt A; Yarotsky SV; Schwarz WH; Zverlov VV
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):635-46. PubMed ID: 20195860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient (R)-3-hydroxybutyrate production using acetyl CoA-regenerating pathway catalyzed by coenzyme A transferase.
    Matsumoto K; Okei T; Honma I; Ooi T; Aoki H; Taguchi S
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):205-10. PubMed ID: 22592551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of n-butanol synthesis in Lactobacillus brevis via the functional expression of thl, hbd, crt and ter.
    Li Q; Wu M; Wen Z; Jiang Y; Wang X; Zhao Y; Liu J; Yang J; Jiang Y; Yang S
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1099-1108. PubMed ID: 33221994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels.
    Atsumi S; Hanai T; Liao JC
    Nature; 2008 Jan; 451(7174):86-9. PubMed ID: 18172501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.