BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 21707458)

  • 1. Potential of breath and skin analysis for monitoring blood glucose concentration in diabetes.
    Turner C
    Expert Rev Mol Diagn; 2011 Jun; 11(5):497-503. PubMed ID: 21707458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus?
    Smith D; Spaněl P; Fryer AA; Hanna F; Ferns GA
    J Breath Res; 2011 Jun; 5(2):022001. PubMed ID: 21512208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An exploratory comparative study of volatile compounds in exhaled breath and emitted by skin using selected ion flow tube mass spectrometry.
    Turner C; Parekh B; Walton C; Spanel P; Smith D; Evans M
    Rapid Commun Mass Spectrom; 2008; 22(4):526-32. PubMed ID: 18215004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath.
    Riess U; Tegtbur U; Fauck C; Fuhrmann F; Markewitz D; Salthammer T
    Anal Chim Acta; 2010 Jun; 669(1-2):53-62. PubMed ID: 20510903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of membrane extraction with sorbent interface for breath analysis.
    Ma V; Lord H; Morley M; Pawliszyn J
    Methods Mol Biol; 2010; 610():451-68. PubMed ID: 20013195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of a portable breath analysis device in monitoring type 1 diabetes patients in a hypoglycaemic clamp: validation with SIFT-MS data.
    Walton C; Patel M; Pitts D; Knight P; Hoashi S; Evans M; Turner C
    J Breath Res; 2014 Sep; 8(3):037108. PubMed ID: 25190582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 diabetes.
    Storer M; Dummer J; Lunt H; Scotter J; McCartin F; Cook J; Swanney M; Kendall D; Logan F; Epton M
    J Breath Res; 2011 Dec; 5(4):046011. PubMed ID: 22134047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive glucose monitoring technology in diabetes management: a review.
    Vashist SK
    Anal Chim Acta; 2012 Oct; 750():16-27. PubMed ID: 23062426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring breath during oral glucose tolerance tests.
    Ghimenti S; Tabucchi S; Lomonaco T; Di Francesco F; Fuoco R; Onor M; Lenzi S; Trivella MG
    J Breath Res; 2013 Mar; 7(1):017115. PubMed ID: 23446273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS).
    Mochalski P; Wiesenhofer H; Allers M; Zimmermann S; Güntner AT; Pineau NJ; Lederer W; Agapiou A; Mayhew CA; Ruzsanyi V
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Feb; 1076():29-34. PubMed ID: 29396365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring.
    Rydosz A
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30012960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GC-MS analysis of breath odor compounds in liver patients.
    Van den Velde S; Nevens F; Van Hee P; van Steenberghe D; Quirynen M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Nov; 875(2):344-8. PubMed ID: 18938115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technology behind commercial devices for blood glucose monitoring in diabetes management: a review.
    Vashist SK; Zheng D; Al-Rubeaan K; Luong JH; Sheu FS
    Anal Chim Acta; 2011 Oct; 703(2):124-36. PubMed ID: 21889626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of volatile organic compounds indicative of human presence in the air.
    Kwak J; Geier BA; Fan M; Gogate SA; Rinehardt SA; Watts BS; Grigsby CC; Ott DK
    J Sep Sci; 2015 Jul; 38(14):2463-9. PubMed ID: 25944350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breath analysis by optical fiber sensor for the determination of exhaled organic compounds with a view to diagnostics.
    Silva LI; Freitas AC; Rocha-Santos TA; Pereira ME; Duarte AC
    Talanta; 2011 Feb; 83(5):1586-94. PubMed ID: 21238756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on noninvasive measurement of blood glucose based on optical rotation].
    Jin H; Ge Q; Hong W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1391-4. PubMed ID: 20095511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breath acetone analysis with miniaturized sample preparation device: in-needle preconcentration and subsequent determination by gas chromatography-mass spectroscopy.
    Ueta I; Saito Y; Hosoe M; Okamoto M; Ohkita H; Shirai S; Tamura H; Jinno K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Aug; 877(24):2551-6. PubMed ID: 19595647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS.
    Turner C; Spanel P; Smith D
    Physiol Meas; 2006 Apr; 27(4):321-37. PubMed ID: 16537976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved predictive models for plasma glucose estimation from multi-linear regression analysis of exhaled volatile organic compounds.
    Lee J; Ngo J; Blake D; Meinardi S; Pontello AM; Newcomb R; Galassetti PR
    J Appl Physiol (1985); 2009 Jul; 107(1):155-60. PubMed ID: 19423833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breath acetone and blood sugar measurements in diabetes.
    Barnett D; Tassopoulos CN; Fraser TR
    Clin Sci; 1969 Oct; 37(2):570. PubMed ID: 4982629
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.