BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 21707498)

  • 1. Targeting βIII-tubulin in glioblastoma multiforme: from cell biology and histopathology to cancer therapeutics.
    Katsetos CD; Draber P; Kavallaris M
    Anticancer Agents Med Chem; 2011 Oct; 11(8):719-28. PubMed ID: 21707498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. Class III beta-tubulin.
    Katsetos CD; Dráberová E; Legido A; Dumontet C; Dráber P
    J Cell Physiol; 2009 Dec; 221(3):505-13. PubMed ID: 19650075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells.
    Bordji K; Grandval A; Cuhna-Alves L; Lechapt-Zalcman E; Bernaudin M
    FEBS J; 2014 Dec; 281(23):5220-36. PubMed ID: 25244496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Class III beta-tubulin and gamma-tubulin are co-expressed and form complexes in human glioblastoma cells.
    Katsetos CD; Dráberová E; Smejkalová B; Reddy G; Bertrand L; de Chadarévian JP; Legido A; Nissanov J; Baas PW; Dráber P
    Neurochem Res; 2007 Aug; 32(8):1387-98. PubMed ID: 17406983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. gamma-Tubulin.
    Katsetos CD; Dráberová E; Legido A; Dráber P
    J Cell Physiol; 2009 Dec; 221(3):514-20. PubMed ID: 19650077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ST-11: A New Brain-Penetrant Microtubule-Destabilizing Agent with Therapeutic Potential for Glioblastoma Multiforme.
    Cherry AE; Haas BR; Naydenov AV; Fung S; Xu C; Swinney K; Wagenbach M; Freeling J; Canton DA; Coy J; Horne EA; Rickman B; Vicente JJ; Scott JD; Ho RJ; Liggitt D; Wordeman L; Stella N
    Mol Cancer Ther; 2016 Sep; 15(9):2018-29. PubMed ID: 27325686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tubulins as therapeutic targets in cancer: from bench to bedside.
    Katsetos CD; Dráber P
    Curr Pharm Des; 2012; 18(19):2778-92. PubMed ID: 22390762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KX2-361: a novel orally bioavailable small molecule dual Src/tubulin inhibitor that provides long term survival in a murine model of glioblastoma.
    Ciesielski MJ; Bu Y; Munich SA; Teegarden P; Smolinski MP; Clements JL; Lau JYN; Hangauer DG; Fenstermaker RA
    J Neurooncol; 2018 Dec; 140(3):519-527. PubMed ID: 30238350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of action of ixabepilone and its interactions with the βIII-tubulin isotype.
    Lopus M; Smiyun G; Miller H; Oroudjev E; Wilson L; Jordan MA
    Cancer Chemother Pharmacol; 2015 Nov; 76(5):1013-24. PubMed ID: 26416565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment.
    van Tellingen O; Yetkin-Arik B; de Gooijer MC; Wesseling P; Wurdinger T; de Vries HE
    Drug Resist Updat; 2015 Mar; 19():1-12. PubMed ID: 25791797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. βIII-tubulin enhances efficacy of cabazitaxel as compared with docetaxel.
    Smiyun G; Azarenko O; Miller H; Rifkind A; LaPointe NE; Wilson L; Jordan MA
    Cancer Chemother Pharmacol; 2017 Jul; 80(1):151-164. PubMed ID: 28567478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel mutations involving βI-, βIIA-, or βIVB-tubulin isotypes with functional resemblance to βIII-tubulin in breast cancer.
    Wang W; Zhang H; Wang X; Patterson J; Winter P; Graham K; Ghosh S; Lee JC; Katsetos CD; Mackey JR; Tuszynski JA; Wong GK; Ludueña RF
    Protoplasma; 2017 May; 254(3):1163-1173. PubMed ID: 27943021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clipping the Wings of Glioblastoma: Modulation of WNT as a Novel Therapeutic Strategy.
    Suwala AK; Hanaford A; Kahlert UD; Maciaczyk J
    J Neuropathol Exp Neurol; 2016 May; 75(5):388-96. PubMed ID: 26979081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration.
    Clark PA; Bhattacharya S; Elmayan A; Darjatmoko SR; Thuro BA; Yan MB; van Ginkel PR; Polans AS; Kuo JS
    J Neurosurg; 2017 May; 126(5):1448-1460. PubMed ID: 27419830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of nanoparticles for drug delivery in glioblastoma multiforme.
    Jain KK
    Expert Rev Neurother; 2007 Apr; 7(4):363-72. PubMed ID: 17425491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3.
    Shan ZN; Tian R; Zhang M; Gui ZH; Wu J; Ding M; Zhou XF; He J
    Oncotarget; 2016 Nov; 7(48):78813-78826. PubMed ID: 27705931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in histone deacetylase inhibitors in targeting glioblastoma stem cells.
    Reddy RG; Bhat UA; Chakravarty S; Kumar A
    Cancer Chemother Pharmacol; 2020 Aug; 86(2):165-179. PubMed ID: 32638092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug delivery approaches for the treatment of glioblastoma multiforme.
    Fakhoury M
    Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1365-73. PubMed ID: 26046399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of KATP channels increases anticancer drug delivery to brain tumors and survival.
    Ningaraj NS; Sankpal UT; Khaitan D; Meister EA; Vats T
    Eur J Pharmacol; 2009 Jan; 602(2-3):188-93. PubMed ID: 19027730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance.
    Taylor TE; Furnari FB; Cavenee WK
    Curr Cancer Drug Targets; 2012 Mar; 12(3):197-209. PubMed ID: 22268382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.