BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21707615)

  • 21. Modeling the local biodiversity impacts of agricultural water use: case study of a wetland in the coastal arid area of Peru.
    Verones F; Bartl K; Pfister S; Jiménez Vílchez R; Hellweg S
    Environ Sci Technol; 2012 May; 46(9):4966-74. PubMed ID: 22463711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Nitrate contamination of the groundwater of the Akkar Plain in northern Lebanon].
    Halwani J; Baroudi BO; Wartel M
    Sante; 1999; 9(4):219-23. PubMed ID: 10623868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility.
    Chae GT; Kim K; Yun ST; Kim KH; Kim SO; Choi BY; Kim HS; Rhee CW
    Chemosphere; 2004 Apr; 55(3):369-78. PubMed ID: 14987935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Groundwater availability as constrained by hydrogeology and environmental flows.
    Watson KA; Mayer AS; Reeves HW
    Ground Water; 2014; 52(2):225-38. PubMed ID: 23582026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial quantification of groundwater abstraction in the irrigated Indus basin.
    Cheema MJ; Immerzeel WW; Bastiaanssen WG
    Ground Water; 2014; 52(1):25-36. PubMed ID: 23441997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Landscape irrigation management for maintaining an aquifer and economic returns.
    Kovacs KF; Mancini M; West G
    J Environ Manage; 2015 Sep; 160():271-82. PubMed ID: 26144558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Climate change would increase the water intensity of irrigated corn ethanol.
    Dominguez-Faus R; Folberth C; Liu J; Jaffe AM; Alvarez PJ
    Environ Sci Technol; 2013 Jun; 47(11):6030-7. PubMed ID: 23701110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying pathways and processes affecting nitrate and orthophosphate inputs to streams in agricultural watersheds.
    Tesoriero AJ; Duff JH; Wolock DM; Spahr NE; Almendinger JE
    J Environ Qual; 2009; 38(5):1892-900. PubMed ID: 19643755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time series analysis to monitor and assess water resources: a moving average approach.
    Reghunath R; Murthy TR; Raghavan BR
    Environ Monit Assess; 2005 Oct; 109(1-3):65-72. PubMed ID: 16240189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery from groundwater extraction in a small catchment area with crystalline bedrock and thin soil cover in Sweden.
    Mossmark F; Hultberg H; Ericsson LO
    Sci Total Environ; 2008 Oct; 404(2-3):253-61. PubMed ID: 18555518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dating problems with selected mining lakes and the adjacent groundwater body in Lusatia, Germany.
    Seebach A; von Rohden C; Ilmberger J; Weise SM; Knoller K
    Isotopes Environ Health Stud; 2010 Sep; 46(3):291-8. PubMed ID: 20645204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-surface wetland sediments as a source of arsenic release to ground water in Asia.
    Polizzotto ML; Kocar BD; Benner SG; Sampson M; Fendorf S
    Nature; 2008 Jul; 454(7203):505-8. PubMed ID: 18650922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.
    Livesley SJ; Adams MA; Grierson PF
    J Environ Qual; 2007; 36(6):1883-94. PubMed ID: 17965391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term (1930-2010) trends in groundwater levels in Texas: influences of soils, landcover and water use.
    Chaudhuri S; Ale S
    Sci Total Environ; 2014 Aug; 490():379-90. PubMed ID: 24867702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers.
    Koh DC; Mayer B; Lee KS; Ko KS
    J Contam Hydrol; 2010 Oct; 118(1-2):62-78. PubMed ID: 20828864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.
    Essaid HI; Caldwell RR
    Sci Total Environ; 2017 Dec; 599-600():581-596. PubMed ID: 28494284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenic geochemistry and hydrostratigraphy in midwestern U.S. glacial deposits.
    Root TL; Gotkowitz MB; Bahr JM; Attig JW
    Ground Water; 2010; 48(6):903-12. PubMed ID: 19840125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying the spatiotemporal variability of nitrate in irrigation water across the Wisconsin Central Sands.
    Campbell TA; Masarik KC; Heineman EM; Kucharik CJ
    J Environ Qual; 2023; 52(6):1102-1114. PubMed ID: 37804127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental water in a regulated river system: the Murrumbidgee River planning approach to the determination of environmental needs.
    Shields J; Good R
    Water Sci Technol; 2002; 45(11):241-9. PubMed ID: 12171359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.