BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21708120)

  • 1. Electron transfer mediated by membrane-bound d-fructose dehydrogenase adsorbed at an oil/water interface.
    Sasaki Y; Sugihara T; Osakai T
    Anal Biochem; 2011 Oct; 417(1):129-35. PubMed ID: 21708120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transfer mechanism of cytochrome c at the oil/water interface as a biomembrane model.
    Imai Y; Sugihara T; Osakai T
    J Phys Chem B; 2012 Jan; 116(1):585-92. PubMed ID: 22166053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase.
    Bollella P; Hibino Y; Kano K; Gorton L; Antiochia R
    Anal Bioanal Chem; 2018 May; 410(14):3253-3264. PubMed ID: 29564502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis.
    Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K
    Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coulometric D-fructose biosensor based on direct electron transfer using D-fructose dehydrogenase.
    Tsujimura S; Nishina A; Kamitaka Y; Kano K
    Anal Chem; 2009 Nov; 81(22):9383-7. PubMed ID: 19908905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial complexes between a protein and lipophilic ions at an oil-water interface.
    Hartvig RA; Méndez MA; van de Weert M; Jorgensen L; Østergaard J; Girault HH; Jensen H
    Anal Chem; 2010 Sep; 82(18):7699-705. PubMed ID: 20735009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and structure of the adsorbed layer of ionic surfactants.
    Ivanov IB; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Nov; 123-126():189-212. PubMed ID: 16860769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct label-free electrochemical detection of proteins using the polarized oil/water interface.
    Osakai T; Yuguchi Y; Gohara E; Katano H
    Langmuir; 2010 Jul; 26(13):11530-7. PubMed ID: 20462245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological changes in adsorbed protein films at the oil-water interface subjected to compression, expansion, and heat processing.
    Xu R; Dickinson E; Murray BS
    Langmuir; 2008 Mar; 24(5):1979-88. PubMed ID: 18211106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption kinetics of some carotenoids at the oil/water interface.
    Joos P; Tomoaia-Cotisel A; Sellers AJ; Tomoaia-Cotisel M
    Colloids Surf B Biointerfaces; 2004 Sep; 37(3-4):83-91. PubMed ID: 15342017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D-fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode.
    Tominaga M; Nomura S; Taniguchi I
    Biosens Bioelectron; 2009 Jan; 24(5):1184-8. PubMed ID: 18707862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260.
    Kawai S; Goda-Tsutsumi M; Yakushi T; Kano K; Matsushita K
    Appl Environ Microbiol; 2013 Mar; 79(5):1654-60. PubMed ID: 23275508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A kinetic model for enzyme interfacial activity and stability: pa-hydroxynitrile lyase at the diisopropyl ether/water interface.
    Cascão Pereira LG; Hickel A; Radke CJ; Blanch HW
    Biotechnol Bioeng; 2002 Jun; 78(6):595-605. PubMed ID: 11992525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure.
    Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ
    Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of proteins with small ionised molecules: electrochemical adsorption and facilitated ion transfer voltammetry of haemoglobin at the liquid/liquid interface.
    Herzog G; Moujahid W; Strutwolf J; Arrigan DW
    Analyst; 2009 Aug; 134(8):1608-13. PubMed ID: 20448927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine.
    Hatay I; Su B; Li F; Méndez MA; Khoury T; Gros CP; Barbe JM; Ersoz M; Samec Z; Girault HH
    J Am Chem Soc; 2009 Sep; 131(37):13453-9. PubMed ID: 19715275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interdomain contacts in flavocytochrome b(2), a mutational analysis.
    Lê KH; Boussac A; Frangioni B; Léger C; Lederer F
    Biochemistry; 2009 Nov; 48(45):10803-9. PubMed ID: 19821613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.