These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21708120)

  • 21. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamical and rheological properties of fluorinated surfactant films adsorbed at the pressurized CO2-H2O interface.
    Tewes F; Krafft MP; Boury F
    Langmuir; 2011 Jul; 27(13):8144-52. PubMed ID: 21630699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes.
    E Ferapontova E; Gorton L
    Bioelectrochemistry; 2005 Apr; 66(1-2):55-63. PubMed ID: 15833703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional lattice Monte Carlo simulations of model proteins. IV. Proteins at an oil-water interface.
    Leonhard K; Prausnitz JM; Radke CJ
    Langmuir; 2006 Mar; 22(7):3265-72. PubMed ID: 16548587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transfer and distribution of L-tryptophan between W/O and O/W, and between W/O and bicontinuous microemulsions through the study of interphase electric properties.
    Chen Y; Guo R
    J Colloid Interface Sci; 2007 Mar; 307(2):488-93. PubMed ID: 17215002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A pyrroloquinoline quinine-dependent membrane-bound d-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered Bi Bi reaction mechanism.
    Yang XP; Wei LJ; Ye JB; Yin B; Wei DZ
    Arch Biochem Biophys; 2008 Sep; 477(2):206-10. PubMed ID: 18407824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases.
    Brändén M; Namslauer A; Hansson O; Aasa R; Brzezinski P
    Biochemistry; 2003 Nov; 42(45):13178-84. PubMed ID: 14609328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of biological demulsification process of water-in-oil emulsion by Alcaligenes sp. S-XJ-1.
    Wen Y; Cheng H; Lu LJ; Liu J; Feng Y; Guan W; Zhou Q; Huang XF
    Bioresour Technol; 2010 Nov; 101(21):8315-22. PubMed ID: 20576429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is the Oil | Water Interface the Simplest and Best Suited Model for Understanding Biomembranes?
    Osakai T
    Anal Sci; 2019 Apr; 35(4):361-366. PubMed ID: 30606904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane-bound dehydrogenases from Gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis.
    Tkac J; Svitel J; Vostiar I; Navratil M; Gemeiner P
    Bioelectrochemistry; 2009 Sep; 76(1-2):53-62. PubMed ID: 19329366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical study of the anticancer drug daunorubicin at a water/oil interface: drug lipophilicity and quantification.
    Ribeiro JA; Silva F; Pereira CM
    Anal Chem; 2013 Feb; 85(3):1582-90. PubMed ID: 23301839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.
    Jourdain LS; Schmitt C; Leser ME; Murray BS; Dickinson E
    Langmuir; 2009 Sep; 25(17):10026-37. PubMed ID: 19459686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interfacial assembly of turnip yellow mosaic virus nanoparticles.
    Kaur G; He J; Xu J; Pingali S; Jutz G; Böker A; Niu Z; Li T; Rawlinson D; Emrick T; Lee B; Thiyagarajan P; Russell TP; Wang Q
    Langmuir; 2009 May; 25(9):5168-76. PubMed ID: 19354217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions.
    Roy S; Dasgupta A; Das PK
    Langmuir; 2006 May; 22(10):4567-73. PubMed ID: 16649765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of proteins at the oil/water interface--observation of protein adsorption by interfacial shear stress measurements.
    Baldursdottir SG; Fullerton MS; Nielsen SH; Jorgensen L
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):41-6. PubMed ID: 20434317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of ionic complexation on release rate profiles from multiple water-in-oil-in-water (W/O/W) emulsions.
    Bonnet M; Cansell M; Placin F; David-Briand E; Anton M; Leal-Calderon F
    J Agric Food Chem; 2010 Jul; 58(13):7762-9. PubMed ID: 20545343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of the oil globule fraction on the release rate profiles from multiple W/O/W emulsions.
    Bonnet M; Cansell M; Placin F; Monteil J; Anton M; Leal-Calderon F
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):44-52. PubMed ID: 20207114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro-cubic monolithic carbon cryogel electrode for direct electron transfer reaction of fructose dehydrogenase.
    Hamano Y; Tsujimura S; Shirai O; Kano K
    Bioelectrochemistry; 2012 Dec; 88():114-7. PubMed ID: 22917965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
    Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T
    FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directing single-walled carbon nanotubes to self-assemble at water/oil interfaces and facilitate electron transfer.
    Zhang Y; Shen Y; Kuehner D; Wu S; Su Z; Ye S; Niu L
    Chem Commun (Camb); 2008 Sep; (36):4273-5. PubMed ID: 18802541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.