BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21708273)

  • 1. Magnetic resonance imaging quantification of regional cerebral blood flow and cerebrovascular reactivity to carbon dioxide in normotensive and hypertensive rats.
    Leoni RF; Paiva FF; Henning EC; Nascimento GC; Tannús A; de Araujo DB; Silva AC
    Neuroimage; 2011 Sep; 58(1):75-81. PubMed ID: 21708273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional cerebral blood flow and arterial blood volume and their reactivity to hypercapnia in hypertensive and normotensive rats.
    Kim T; Richard Jennings J; Kim SG
    J Cereb Blood Flow Metab; 2014 Mar; 34(3):408-14. PubMed ID: 24252849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensity of halothane- and hypercapnia-induced cerebral hyperemia is strain-dependent in rats.
    Takahashi H; Kirsch JR; Okada T; Traystman RJ
    Anesth Analg; 1996 Aug; 83(2):359-65. PubMed ID: 8694319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral angiography, blood flow and vascular reactivity in progressive hypertension.
    Li Y; Shen Q; Huang S; Li W; Muir ER; Long JA; Duong TQ
    Neuroimage; 2015 May; 111():329-37. PubMed ID: 25731987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired CBF regulation and high CBF threshold contribute to the increased sensitivity of spontaneously hypertensive rats to cerebral ischemia.
    Kang BT; Leoni RF; Silva AC
    Neuroscience; 2014 Jun; 269():223-31. PubMed ID: 24680939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral blood flow during inhibition of brain nitric oxide synthase activity in normal, hypertensive, and stroke-prone rats.
    Izuta M; Clavier N; Kirsch JR; Traystman RJ
    Stroke; 1995 Jun; 26(6):1079-85. PubMed ID: 7539167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ceranapril and cerebral blood flow autoregulation.
    Torup M; Waldemar G; Paulson OB
    J Hypertens; 1993 Apr; 11(4):399-405. PubMed ID: 8390507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin converting enzyme inhibition and the upper limit of cerebral blood flow autoregulation: effect of sympathetic stimulation.
    Waldemar G; Paulson OB; Barry DI; Knudsen GM
    Circ Res; 1989 Jun; 64(6):1197-204. PubMed ID: 2655965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative regional cerebral blood flow MRI of animal model of attention-deficit/hyperactivity disorder.
    Danker JF; Duong TQ
    Brain Res; 2007 May; 1150():217-24. PubMed ID: 17391651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of basal cerebral blood flow and cerebral vascular resistance in spontaneously hypertensive rats upon vasoconstrictor prostanoids.
    Oseka M; Koźniewska E
    Acta Neurochir Suppl; 1997; 70():228-30. PubMed ID: 9416330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of antihypertensive therapy on cerebral autoregulation in aged hypertensive rats.
    Hoffman WE; Miletich DJ; Albrecht RF
    Stroke; 1982; 13(5):701-4. PubMed ID: 7123604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Captopril improves cerebrovascular structure and function in old hypertensive rats.
    Dupuis F; Atkinson J; Limiñana P; Chillon JM
    Br J Pharmacol; 2005 Feb; 144(3):349-56. PubMed ID: 15655534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional cerebral blood flow autoregulation in normotensive and spontaneously hypertensive rats--effects of sympathetic denervation.
    Sadoshima S; Fujii K; Yao H; Kusuda K; Ibayashi S; Fujishima M
    Stroke; 1986; 17(5):981-4. PubMed ID: 3764971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of aging and chronic hypertension on cerebral blood flow and cerebrovascular CO2 reactivity in the rat.
    Tamaki K; Nakai M; Yokota T; Ogata J
    Gerontology; 1995; 41(1):11-7. PubMed ID: 7737529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aging and hypertension on cerebral ischemic susceptibility: evidenced by MR diffusion-perfusion study in rat.
    Lee TH; Liu HL; Yang ST; Yang JT; Yeh MY; Lin JR
    Exp Neurol; 2011 Feb; 227(2):314-21. PubMed ID: 21146526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral microregional oxygen balance during chronic versus acute hypertension in middle cerebral artery occluded rats.
    Chi OZ; Wei HM; Tse J; Klein SL; Weiss HR
    Anesth Analg; 1996 Mar; 82(3):587-92. PubMed ID: 8623966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI study of cerebral blood flow, vascular reactivity, and vascular coupling in systemic hypertension.
    Li Y; Li R; Liu M; Nie Z; Muir ER; Duong TQ
    Brain Res; 2021 Feb; 1753():147224. PubMed ID: 33358732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive Measurement of Cerebral Blood Flow Under Anesthesia Using Arterial Spin Labeling MRI: A Pilot Study.
    Venkatraghavan L; Poublanc J; Bharadwaj S; Sobczyk O; Crawley AP; Mandell DM; Mikulis DJ; Fisher JA
    J Neurosurg Anesthesiol; 2016 Oct; 28(4):331-6. PubMed ID: 26397237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal MR imaging study in the prediction of ischemic susceptibility after cerebral hypoperfusion in rats: Influence of aging and hypertension.
    Lee JT; Liu HL; Yang JT; Yang ST; Lin JR; Lee TH
    Neuroscience; 2014 Jan; 257():31-40. PubMed ID: 24188793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ketamine, not propofol, attenuates cerebrovascular response to carbon dioxide in humans with isoflurane anesthesia.
    Nagase K; Iida H; Ohata H; Dohi S
    J Clin Anesth; 2001 Dec; 13(8):551-5. PubMed ID: 11755322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.