BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21708394)

  • 1. Iron oxide amended biosand filters for virus removal.
    Bradley I; Straub A; Maraccini P; Markazi S; Nguyen TH
    Water Res; 2011 Oct; 45(15):4501-10. PubMed ID: 21708394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles.
    Gutierrez L; Li X; Wang J; Nangmenyi G; Economy J; Kuhlenschmidt TB; Kuhlenschmidt MS; Nguyen TH
    Water Res; 2009 Dec; 43(20):5198-208. PubMed ID: 19766286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes.
    Zhu B; Clifford DA; Chellam S
    Water Res; 2005 Aug; 39(13):3098-108. PubMed ID: 16024063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent versus continuous operation of biosand filters.
    Young-Rojanschi C; Madramootoo C
    Water Res; 2014 Feb; 49():1-10. PubMed ID: 24316177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virus removal by iron coagulation-microfiltration.
    Zhu B; Clifford DA; Chellam S
    Water Res; 2005 Dec; 39(20):5153-61. PubMed ID: 16298417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of virus control during iron electrocoagulation--microfiltration of surface water.
    Tanneru CT; Chellam S
    Water Res; 2012 May; 46(7):2111-20. PubMed ID: 22326196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virus attenuation by microbial mechanisms during the idle time of a household slow sand filter.
    Elliott MA; Digiano FA; Sobsey MD
    Water Res; 2011 Aug; 45(14):4092-102. PubMed ID: 21665239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media.
    Elliott M; Stauber CE; DiGiano FA; de Aceituno AF; Sobsey MD
    Int J Environ Res Public Health; 2015 Aug; 12(9):10276-99. PubMed ID: 26308036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ceramic media amended with metal oxide for the capture of viruses in drinking water.
    Brown J; Sobsey MD
    Environ Technol; 2009 Apr; 30(4):379-91. PubMed ID: 19492549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved virus removal in ceramic depth filters modified with MgO.
    Michen B; Fritsch J; Aneziris C; Graule T
    Environ Sci Technol; 2013 Feb; 47(3):1526-33. PubMed ID: 23286835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.
    Boudaud N; Machinal C; David F; Fréval-Le Bourdonnec A; Jossent J; Bakanga F; Arnal C; Jaffrezic MP; Oberti S; Gantzer C
    Water Res; 2012 May; 46(8):2651-64. PubMed ID: 22421032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinactivation of virus on iron-oxide coated sand: enhancing inactivation in sunlit waters.
    Pecson BM; Decrey L; Kohn T
    Water Res; 2012 Apr; 46(6):1763-70. PubMed ID: 22264797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mg/Al layered double hydroxide for bacteriophage removal in aqueous solution.
    Kim JH; Park JA; Kim SB
    Water Sci Technol; 2012; 66(4):761-7. PubMed ID: 22766864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of particle-associated bacteriophages by dual-media filtration at different filter cycle stages and impacts on subsequent UV disinfection.
    Templeton MR; Andrews RC; Hofmann R
    Water Res; 2007 Jun; 41(11):2393-406. PubMed ID: 17433406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiwalled carbon nanotube filter: improving viral removal at low pressure.
    Brady-Estévez AS; Schnoor MH; Vecitis CD; Saleh NB; Elimelech M
    Langmuir; 2010 Sep; 26(18):14975-82. PubMed ID: 20795662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of sand-based water filters for point-of-use arsenic removal in China.
    Smith K; Li Z; Chen B; Liang H; Zhang X; Xu R; Li Z; Dai H; Wei C; Liu S
    Chemosphere; 2017 Feb; 168():155-162. PubMed ID: 27780119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter.
    Elliott MA; Stauber CE; Koksal F; DiGiano FA; Sobsey MD
    Water Res; 2008 May; 42(10-11):2662-70. PubMed ID: 18281076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: experimental investigation and modeling.
    Jenkins MW; Tiwari SK; Darby J
    Water Res; 2011 Nov; 45(18):6227-39. PubMed ID: 21974872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four years of development and field-testing of IHE arsenic removal family filter in rural Bangladesh.
    Petrusevski B; Sharma S; van der Meer WG; Kruis F; Khan M; Barua M; Schippers JC
    Water Sci Technol; 2008; 58(1):53-8. PubMed ID: 18653936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.