BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21708509)

  • 1. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.
    Zelik KE; Collins SH; Adamczyk PG; Segal AD; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Czerniecki JM; Kuo AD
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):411-9. PubMed ID: 21708509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prosthetic push-off power in trans-tibial amputee level ground walking: A systematic review.
    Müller R; Tronicke L; Abel R; Lechler K
    PLoS One; 2019; 14(11):e0225032. PubMed ID: 31743353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of biomechanical outcomes to independent variations of hindfoot and forefoot stiffness in foot prostheses.
    Adamczyk PG; Roland M; Hahn ME
    Hum Mov Sci; 2017 Aug; 54():154-171. PubMed ID: 28499159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptions and biomechanical effects of varying prosthetic ankle stiffness during uphill walking: A case series.
    Ármannsdóttir AL; Lecomte C; Lemaire E; Brynjólfsson S; Briem K
    Gait Posture; 2024 Feb; 108():354-360. PubMed ID: 38227995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of push-off and collision work during step-to-step transition in amputees walking at self-selected speed: Effect of amputation level.
    Sedran L; Bonnet X; Thomas-Pohl M; Loiret I; Martinet N; Pillet H; Paysant J
    J Biomech; 2024 Jan; 163():111943. PubMed ID: 38244403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Walking Energy Efficiency in Transtibial Amputees Through the Integration of a Low-Power Actuator in an ESAR Foot.
    Mazzarini A; Fagioli I; Eken H; Livolsi C; Ciapetti T; Maselli A; Piazzini M; Macchi C; Davalli A; Gruppioni E; Trigili E; Crea S; Vitiello N
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1397-1406. PubMed ID: 38507380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical effects of adding an articulating toe joint to a passive foot prosthesis for incline and decline walking.
    Teater RH; Zelik KE; McDonald KA
    PLoS One; 2024; 19(5):e0295465. PubMed ID: 38758923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of ankle stiffness on mechanics and energetics of walking with added loads: a prosthetic emulator study.
    Hedrick EA; Malcolm P; Wilken JM; Takahashi KZ
    J Neuroeng Rehabil; 2019 Nov; 16(1):148. PubMed ID: 31752942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of lower-limb joint mechanics to prosthetic forefoot stiffness with a variable stiffness foot in level-ground walking.
    Nichols KM; Adamczyk PG
    J Biomech; 2023 Jan; 147():111436. PubMed ID: 36701959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adding a toe joint to a prosthesis: walking biomechanics, energetics, and preference of individuals with unilateral below-knee limb loss.
    McDonald KA; Teater RH; Cruz JP; Kerr JT; Bastas G; Zelik KE
    Sci Rep; 2021 Jan; 11(1):1924. PubMed ID: 33479374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses.
    Rock CG; Wurdeman SR; Stergiou N; Takahashi KZ
    PLoS One; 2018; 13(10):e0205098. PubMed ID: 30281652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanics and energetics of load carriage during human walking.
    Huang TW; Kuo AD
    J Exp Biol; 2014 Feb; 217(Pt 4):605-13. PubMed ID: 24198268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfemoral limb loss modestly increases the metabolic cost of optimal control simulations of walking.
    Miller RH; Bell EM; Russell Esposito E
    PeerJ; 2024; 12():e16756. PubMed ID: 38223753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of series ankle elasticity in bipedal walking.
    Zelik KE; Huang TW; Adamczyk PG; Kuo AD
    J Theor Biol; 2014 Apr; 346():75-85. PubMed ID: 24365635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A passive mechanism for decoupling energy storage and return in ankle-foot prostheses: A case study in recycling collision energy.
    Quraishi HA; Shepherd MK; McManus L; Harlaar J; Plettenburg DH; Rouse EJ
    Wearable Technol; 2021; 2():e9. PubMed ID: 38486628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-power ankle-foot prosthesis for push-off enhancement.
    Mazzarini A; Fantozzi M; Papapicco V; Fagioli I; Lanotte F; Baldoni A; Dell'Agnello F; Ferrara P; Ciapetti T; Molino Lova R; Gruppioni E; Trigili E; Crea S; Vitiello N
    Wearable Technol; 2023; 4():e18. PubMed ID: 38487780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bionic intelligent ankle-foot prosthesis based on the conjugate curved surface.
    Li B; Xu G; Luo D; Teng Z; Pei J; Zhang S; Tao T; Han C; Wu Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions.
    Riemer R; Shapiro A
    J Neuroeng Rehabil; 2011 Apr; 8():22. PubMed ID: 21521509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of composite prosthetic feet: manufacturing processes and production guidelines.
    Elgamsy R; Awad MI; Ramadan N; Amer A; Osama Y; El-Hilaly R; Elsabbagh A
    Sci Rep; 2023 Oct; 13(1):17421. PubMed ID: 37833321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.