BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21708558)

  • 1. Population structure, genetic diversity, and clone formation in Quercus chrysolepis (Fagaceae).
    Montalvo A; Conard S; Conkle M; Hodgskiss P
    Am J Bot; 1997 Nov; 84(11):1553. PubMed ID: 21708558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae).
    Dodd RS; Mayer W; Nettel A; Afzal-Rafii Z
    J Hered; 2013; 104(1):105-14. PubMed ID: 23109719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration mode affects spatial genetic structure of Nothofagus dombeyi forests.
    Premoli AC; Kitzberger T
    Mol Ecol; 2005 Jul; 14(8):2319-29. PubMed ID: 15969717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local forest environment largely affects below-ground growth, clonal diversity and fine-scale spatial genetic structure in the temperate deciduous forest herb Paris quadrifolia.
    Jacquemyn H; Brys R; Honnay O; Hermy M; Roldán-Ruiz I
    Mol Ecol; 2005 Dec; 14(14):4479-88. PubMed ID: 16313608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic diversity of Typha latifolia (Typhaceae) and the impact of pollutants examined with tandem-repetitive DNA probes.
    Keane B; Pelikan S; Toth GP; Smith MK; Rogstad SH
    Am J Bot; 1999 Sep; 86(9):1226-38. PubMed ID: 10487810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Landscape-level spatial genetic structure in Quercus acutissima (Fagaceae).
    Chung MY; Nason J; Chung MG; Kim KJ; Park CW; Sun BY; Pak JH
    Am J Bot; 2002 Aug; 89(8):1229-36. PubMed ID: 21665723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Within-population genetic structure and clonal diversity of a threatened endemic metallophyte, Viola calaminaria (Violaceae).
    Bizoux JP; Mahy G
    Am J Bot; 2007 May; 94(5):887-95. PubMed ID: 21636457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetics of sprouting: effects of long-term persistence in fire-prone ecosystems.
    Premoli AC; Steinke L
    Mol Ecol; 2008 Sep; 17(17):3827-35. PubMed ID: 18662228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotypic diversity of Armillaria gallica from mixed oak forests in Massachusetts.
    Brazee NJ; Marra RE; Wick RL
    Mycologia; 2012; 104(1):53-61. PubMed ID: 21914822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling.
    Chybicki IJ; Burczyk J
    Mol Ecol; 2010 May; 19(10):2137-51. PubMed ID: 20550635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation.
    Born C; Hardy OJ; Chevallier MH; Ossari S; Attéké C; Wickings EJ; Hossaert-McKey M
    Mol Ecol; 2008 Apr; 17(8):2041-50. PubMed ID: 18331246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-scale spatial genetic structure and gene flow in a small, fragmented population of Sinojackia rehderiana (Styracaceae), an endangered tree species endemic to China.
    Yao X; Zhang J; Ye Q; Huang H
    Plant Biol (Stuttg); 2011 Mar; 13(2):401-10. PubMed ID: 21309987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited seed dispersal and microspatial population structure of an agamospermous grass of West African savannahs, Hyparrhenia diplandra (Poaceae).
    Garnier LK; Durand J; Dajoz I
    Am J Bot; 2002 Nov; 89(11):1785-91. PubMed ID: 21665606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of gene flow on spatial genetic structure in the riparian canopy tree Cercidiphyllum japonicum revealed by microsatellite analysis.
    Sato T; Isagi Y; Sakio H; Osumi K; Goto S
    Heredity (Edinb); 2006 Jan; 96(1):79-84. PubMed ID: 16304606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic consequences of habitat fragmentation in long-lived tree species: the case of the mediterranean Holm Oak (Quercus ilex, L.).
    Ortego J; Bonal R; Muñoz A
    J Hered; 2010; 101(6):717-26. PubMed ID: 20624756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clonal and spatial genetic structure within populations of a coastal plant, Carex kobomugi (Cyperaceae).
    Ohsako T
    Am J Bot; 2010 Mar; 97(3):458-70. PubMed ID: 21622409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial genetic structure within a metallicolous population of Arabidopsis halleri, a clonal, self-incompatible and heavy-metal-tolerant species.
    Van Rossum F; Bonnin I; Fenart S; Pauwels M; Petit D; Saumitou-Laprade P
    Mol Ecol; 2004 Oct; 13(10):2959-67. PubMed ID: 15367112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional fine-scale genetic structure of the neotropical epiphytic orchid, Laelia rubescens.
    Trapnell DW; Hamrick JL; Nason JD
    Mol Ecol; 2004 May; 13(5):1111-8. PubMed ID: 15078449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fine spatial structure of allozyme genotypes in isolated population of pedunculate oak Quercus robur L. (Fagaceae)].
    Red'kina NN; Mullagulov RIu; Ianbaev IuA; Degen B
    Genetika; 2008 Aug; 44(8):1141-4. PubMed ID: 18825965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mating patterns of black oak Quercus velutina (Fagaceae) in a Missouri oak-hickory forest.
    Fernández-Manjarrés JF; Idol J; Sork VL
    J Hered; 2006; 97(5):451-5. PubMed ID: 16985080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.