These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2170858)

  • 21. Role of adenosine in heterosynaptic, posttetanic depression in area CA1 of hippocampus.
    Grover LM; Teyler TJ
    Neurosci Lett; 1993 May; 154(1-2):39-42. PubMed ID: 8395668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors.
    Fiumara F; Leitinger G; Milanese C; Montarolo PG; Ghirardi M
    Neuroscience; 2005; 134(4):1133-51. PubMed ID: 16054762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-lasting facilitation of inhibitory transmission by monoaminergic and cAMP-dependent mechanism in rat cerebellar GABAergic synapses.
    Mitoma H; Konishi S
    Neurosci Lett; 1996 Oct; 217(2-3):141-4. PubMed ID: 8916092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of cyclic AMP on the excitation and response of command neurons responsible for the snail defensive behavior caused by sensory stimulation].
    Nikitin VP; Kozyrev SA
    Ross Fiziol Zh Im I M Sechenova; 1999 Feb; 85(2):237-45. PubMed ID: 10389180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intraneuronal guanylyl-imidodiphosphate injection mimics long-term synaptic hyperpolarization in Aplysia.
    Treistman SN; Levitan IB
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4689-92. PubMed ID: 188052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opposite regulation by the beta-adrenoceptor-cyclic AMP system of synaptic plasticity in the medial and lateral amygdala in vitro.
    Watanabe Y; Ikegaya Y; Saito H; Abe K
    Neuroscience; 1996 Apr; 71(4):1031-5. PubMed ID: 8684606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Role of cAMP in providing for the plastic properties of the electro-excitable membrane of neurons].
    D'iakonova TL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1987; 37(1):106-14. PubMed ID: 3033935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices.
    Jacoby S; Sims RE; Hartell NA
    J Physiol; 2001 Sep; 535(Pt 3):825-39. PubMed ID: 11559778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Participation of cardioactive peptides in habituation and sensitization of the synaptic input of command neurons of snail defense behavior.
    Bravarenko NI
    Neurosci Behav Physiol; 1995; 25(2):178-83. PubMed ID: 7630503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Excitatory and inhibitory monosynaptic peptidergic transmissions in the CNS of the edible snail Helix pomatia].
    Kononenko NI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1993; 43(1):121-8. PubMed ID: 8385384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The development of transmission at an identified molluscan synapse. I. The emergence of synaptic plasticities.
    Pawson PA; Chase R
    J Neurophysiol; 1988 Dec; 60(6):2196-210. PubMed ID: 2853209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A role of cyclic nucleotides in neuromuscular transmission.
    Standaert FG; Dretchen KL; Skirboll LR; Morgenroth VH
    J Pharmacol Exp Ther; 1976 Dec; 199(3):553-64. PubMed ID: 186585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of cAMP on the excitability and responses of defensive behavior command neurons in the common snail evoked by sensory stimuli.
    Nikitin VP; Kozyrev SA
    Neurosci Behav Physiol; 2000; 30(4):441-7. PubMed ID: 10981948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adenosine A2 receptors modulate hippocampal synaptic transmission via a cyclic-AMP-dependent pathway.
    Kessey K; Mogul DJ
    Neuroscience; 1998 May; 84(1):59-69. PubMed ID: 9522362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synapse-specific plasticity in command neurons during learning of edible snails under the action of caspase inhibitors.
    Kozyrev SA; Nikitin VP; Sherstnev VV
    Bull Exp Biol Med; 2007 Dec; 144(6):755-9. PubMed ID: 18856194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of cyclic AMP in the modulation of synaptic efficacy.
    Shimahara T; Tauc L
    J Physiol (Paris); 1978; 74(5):515-9. PubMed ID: 34032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reticulospinal glutamate synapse in lamprey: plasticity and presynaptic variability.
    Brodin L; Shupliakov O; Pieribone VA; Hellgren J; Hill RH
    J Neurophysiol; 1994 Aug; 72(2):592-604. PubMed ID: 7983521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The role of the adenyl cyclase system in cholinergic modulation of synaptic transmission in the hippocampus].
    Goldukhin OV; Budantsev AIu; Shchipakina TG; Kondrat'ev VE
    Neirofiziologiia; 1989; 21(4):435-42. PubMed ID: 2572980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of alpha-latrotoxin on synaptic transmission between identified neurons in Helix central nervous system].
    Osipenko ON; Romanenko AV; Petrushenko EA; Terletskaia IaT
    Neirofiziologiia; 1992; 24(4):430-7. PubMed ID: 1331823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two modulatory inputs exert reciprocal reinforcing effects on synaptic input of premotor interneurons for withdrawal in terrestrial snails.
    Maksimova OA; Bravarenko NI; Balaban PM
    Learn Mem; 1999; 6(2):168-76. PubMed ID: 10327241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.