These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21708724)

  • 1. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution.
    Mackie RI
    Integr Comp Biol; 2002 Apr; 42(2):319-26. PubMed ID: 21708724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters.
    Clauss M; Frey R; Kiefer B; Lechner-Doll M; Loehlein W; Polster C; Rössner GE; Streich WJ
    Oecologia; 2003 Jun; 136(1):14-27. PubMed ID: 12712314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients.
    Stevens CE; Hume ID
    Physiol Rev; 1998 Apr; 78(2):393-427. PubMed ID: 9562034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mixing and propulsion of the contents of the reticulo-rumen].
    Baumont R; Deswysen AG
    Reprod Nutr Dev; 1991; 31(4):335-59. PubMed ID: 1660717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teeth and the gastrointestinal tract in mammals: when 1 + 1 = 3.
    Clauss M; Fritz J; Hummel J
    Philos Trans R Soc Lond B Biol Sci; 2023 Dec; 378(1891):20220544. PubMed ID: 37839451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review: Comparative methane production in mammalian herbivores.
    Clauss M; Dittmann MT; Vendl C; Hagen KB; Frei S; Ortmann S; Müller DWH; Hammer S; Munn AJ; Schwarm A; Kreuzer M
    Animal; 2020 Mar; 14(S1):s113-s123. PubMed ID: 32024568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biology of gut anaerobic fungi.
    Bauchop T
    Biosystems; 1989; 23(1):53-64. PubMed ID: 2560409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Woodrat Gut Microbiota as an Experimental System for Understanding Microbial Metabolism of Dietary Toxins.
    Kohl KD; Dearing MD
    Front Microbiol; 2016; 7():1165. PubMed ID: 27516760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary adaptations of ruminants and their potential relevance for modern production systems.
    Clauss M; Hume ID; Hummel J
    Animal; 2010 Jul; 4(7):979-92. PubMed ID: 22444604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota.
    Kohl KD; Miller AW; Marvin JE; Mackie R; Dearing MD
    Environ Microbiol; 2014 Sep; 16(9):2869-78. PubMed ID: 24373154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population dynamics of rumen microbes using modern techniques in rumen enhanced solid incubation.
    Raizada N; Sonakya V; Dalhoff R; Hausner M; Wilderer PA
    Water Sci Technol; 2003; 48(4):113-9. PubMed ID: 14531429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of modern molecular biology techniques to study micro-ecosystem in the rumen].
    Duan ZY; Guo YQ; Liu JX
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):166-9. PubMed ID: 16579489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinship, inbreeding and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting tortoise.
    Yuan ML; Dean SH; Longo AV; Rothermel BB; Tuberville TD; Zamudio KR
    Mol Ecol; 2015 May; 24(10):2521-36. PubMed ID: 25809385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants.
    Gruninger RJ; Ribeiro GO; Cameron A; McAllister TA
    Animal; 2019 Sep; 13(9):1843-1854. PubMed ID: 31062682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rumen digestive physiology and microbial ecology.
    Hoover WH; Miller TK
    Vet Clin North Am Food Anim Pract; 1991 Jul; 7(2):311-25. PubMed ID: 1893273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of anaerobic gut fungi in ruminants.
    Gordon GL; Phillips MW
    Nutr Res Rev; 1998 Jun; 11(1):133-68. PubMed ID: 19087463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FECAL METHANOGENS AND VERTEBRATE EVOLUTION.
    Hackstein JHP; van Alen TA
    Evolution; 1996 Apr; 50(2):559-572. PubMed ID: 28568959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ciliate protozoa in nutrition of the ruminant.
    Veira DM
    J Anim Sci; 1986 Nov; 63(5):1547-60. PubMed ID: 3098727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane production by two non-ruminant foregut-fermenting herbivores: The collared peccary (Pecari tajacu) and the pygmy hippopotamus (Hexaprotodon liberiensis).
    Vendl C; Frei S; Dittmann MT; Furrer S; Ortmann S; Lawrenz A; Lange B; Munn A; Kreuzer M; Clauss M
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Jan; 191():107-114. PubMed ID: 26454225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling digestive constraints in non-ruminant and ruminant foregut-fermenting mammals.
    Munn AJ; Streich WJ; Hummel J; Clauss M
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Sep; 151(1):78-84. PubMed ID: 18586113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.