BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21708993)

  • 1. Caspase-1 activation of interleukin-1β (IL-1β) and IL-18 is dispensable for induction of experimental cerebral malaria.
    Kordes M; Matuschewski K; Hafalla JC
    Infect Immun; 2011 Sep; 79(9):3633-41. PubMed ID: 21708993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental cerebral malaria progresses independently of the Nlrp3 inflammasome.
    Reimer T; Shaw MH; Franchi L; Coban C; Ishii KJ; Akira S; Horii T; Rodriguez A; Núñez G
    Eur J Immunol; 2010 Mar; 40(3):764-9. PubMed ID: 19950187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria.
    Capuccini B; Lin J; Talavera-López C; Khan SM; Sodenkamp J; Spaccapelo R; Langhorne J
    Sci Rep; 2016 Dec; 6():39258. PubMed ID: 27991544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Murine cerebral malaria development is independent of toll-like receptor signaling.
    Togbe D; Schofield L; Grau GE; Schnyder B; Boissay V; Charron S; Rose S; Beutler B; Quesniaux VF; Ryffel B
    Am J Pathol; 2007 May; 170(5):1640-8. PubMed ID: 17456769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The immunomodulatory effect of microglia on ECM neuroinflammation via the PD-1/PD-L1 pathway.
    Shen Y; Li Y; Zhu Q; Wang J; Huang Y; Liang J; Wu X; Zhao Y
    CNS Neurosci Ther; 2022 Jan; 28(1):46-63. PubMed ID: 34766463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin-18 mediates interleukin-1-induced cardiac dysfunction.
    Toldo S; Mezzaroma E; O'Brien L; Marchetti C; Seropian IM; Voelkel NF; Van Tassell BW; Dinarello CA; Abbate A
    Am J Physiol Heart Circ Physiol; 2014 Apr; 306(7):H1025-31. PubMed ID: 24531812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myeloid expression of the AP-1 transcription factor JUNB modulates outcomes of type 1 and type 2 parasitic infections.
    Fontana MF; Baccarella A; Kellar D; Oniskey TK; Terinate P; Rosenberg SD; Huang EJ; Herbert DR; Kim CC
    Parasite Immunol; 2015 Sep; 37(9):470-8. PubMed ID: 26178310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liver-stage Plasmodium infection tunes clinical outcomes.
    Kaushansky A; Minkah N
    Trends Parasitol; 2023 May; 39(5):321-322. PubMed ID: 36935339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formal modeling and analysis of the MAL-associated biological regulatory network: insight into cerebral malaria.
    Ahmad J; Niazi U; Mansoor S; Siddique U; Bibby J
    PLoS One; 2012; 7(3):e33532. PubMed ID: 22479409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An immunopathogenic perspective of interleukin-1 signaling.
    Lin X; Twelkmeyer T; Wang SY; Xu RN; Wang FS; Zhang C; Tang H
    Cell Mol Immunol; 2020 Aug; 17(8):892-893. PubMed ID: 32467618
    [No Abstract]   [Full Text] [Related]  

  • 11. Selection and refinement: the malaria parasite's infection and exploitation of host hepatocytes.
    Kaushansky A; Kappe SH
    Curr Opin Microbiol; 2015 Aug; 26():71-8. PubMed ID: 26102161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endoplasmic reticulum stress and neurodegeneration in experimental cerebral malaria.
    Anand SS; Babu PP
    Neurosignals; 2013; 21(1-2):99-111. PubMed ID: 22584375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity and complexity of cell death: a historical review.
    Park W; Wei S; Kim BS; Kim B; Bae SJ; Chae YC; Ryu D; Ha KT
    Exp Mol Med; 2023 Aug; 55(8):1573-1594. PubMed ID: 37612413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AIM2 sensors mediate immunity to
    Marques-da-Silva C; Poudel B; Baptista RP; Peissig K; Hancox LS; Shiau JC; Pewe LL; Shears MJ; Kanneganti TD; Sinnis P; Kyle DE; Gurung P; Harty JT; Kurup SP
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2210181120. PubMed ID: 36595704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling Cell Death Pathways during Malaria Infection: What Do We Know So Far?
    Sena-Dos-Santos C; Braga-da-Silva C; Marques D; Azevedo Dos Santos Pinheiro J; Ribeiro-Dos-Santos Â; Cavalcante GC
    Cells; 2021 Feb; 10(2):. PubMed ID: 33672278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerator or Brake: Immune Regulators in Malaria.
    Cai C; Hu Z; Yu X
    Front Cell Infect Microbiol; 2020; 10():610121. PubMed ID: 33363057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caspase-8 mediates inflammation and disease in rodent malaria.
    Pereira LMN; Assis PA; de Araújo NM; Durso DF; Junqueira C; Ataíde MA; Pereira DB; Lien E; Fitzgerald KA; Zamboni DS; Golenbock DT; Gazzinelli RT
    Nat Commun; 2020 Sep; 11(1):4596. PubMed ID: 32929083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Liver-Stage
    Sato Y; Ries S; Stenzel W; Fillatreau S; Matuschewski K
    Front Immunol; 2019; 10():2554. PubMed ID: 31736970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors.
    Lacey CA; Miao EA
    Cold Spring Harb Perspect Biol; 2020 Feb; 12(2):. PubMed ID: 31501197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inflammasome activation negatively regulates MyD88-IRF7 type I IFN signaling and anti-malaria immunity.
    Yu X; Du Y; Cai C; Cai B; Zhu M; Xing C; Tan P; Lin M; Wu J; Li J; Wang M; Wang HY; Su XZ; Wang RF
    Nat Commun; 2018 Nov; 9(1):4964. PubMed ID: 30470758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.