BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 21709161)

  • 1. Using machine learning for concept extraction on clinical documents from multiple data sources.
    Torii M; Wagholikar K; Liu H
    J Am Med Inform Assoc; 2011; 18(5):580-7. PubMed ID: 21709161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid methods for improving information access in clinical documents: concept, assertion, and relation identification.
    Minard AL; Ligozat AL; Ben Abacha A; Bernhard D; Cartoni B; Deléger L; Grau B; Rosset S; Zweigenbaum P; Grouin C
    J Am Med Inform Assoc; 2011; 18(5):588-93. PubMed ID: 21597105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.
    Uzuner Ö; South BR; Shen S; DuVall SL
    J Am Med Inform Assoc; 2011; 18(5):552-6. PubMed ID: 21685143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing clinical concept extraction with distributional semantics.
    Jonnalagadda S; Cohen T; Wu S; Gonzalez G
    J Biomed Inform; 2012 Feb; 45(1):129-40. PubMed ID: 22085698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Information extraction from multi-institutional radiology reports.
    Hassanpour S; Langlotz CP
    Artif Intell Med; 2016 Jan; 66():29-39. PubMed ID: 26481140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.
    Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H
    J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and application of a high throughput natural language processing architecture to convert all clinical documents in a clinical data warehouse into standardized medical vocabularies.
    Afshar M; Dligach D; Sharma B; Cai X; Boyda J; Birch S; Valdez D; Zelisko S; Joyce C; Modave F; Price R
    J Am Med Inform Assoc; 2019 Nov; 26(11):1364-1369. PubMed ID: 31145455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of pooling annotated corpora for clinical concept extraction.
    Wagholikar K; Torii M; Jonnalagadda S; Liu H
    AMIA Jt Summits Transl Sci Proc; 2012; 2012():38. PubMed ID: 22779047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.
    Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning-based coreference resolution of concepts in clinical documents.
    Ware H; Mullett CJ; Jagannathan V; El-Rawas O
    J Am Med Inform Assoc; 2012; 19(5):883-7. PubMed ID: 22582205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rule based solution to co-reference resolution in clinical text.
    Chen P; Hinote D; Chen G
    J Am Med Inform Assoc; 2013; 20(5):891-7. PubMed ID: 23059732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BioTagger-GM: a gene/protein name recognition system.
    Torii M; Hu Z; Wu CH; Liu H
    J Am Med Inform Assoc; 2009; 16(2):247-55. PubMed ID: 19074302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Travel History Extraction From Clinical Notes for Informing the Detection of Emergent Infectious Disease Events: Algorithm Development and Validation.
    Peterson KS; Lewis J; Patterson OV; Chapman AB; Denhalter DW; Lye PA; Stevens VW; Gamage SD; Roselle GA; Wallace KS; Jones M
    JMIR Public Health Surveill; 2021 Mar; 7(3):e26719. PubMed ID: 33759790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches.
    Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH
    J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer learning based clinical concept extraction on data from multiple sources.
    Lv X; Guan Y; Deng B
    J Biomed Inform; 2014 Dec; 52():55-64. PubMed ID: 24859154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A knowledge discovery and reuse pipeline for information extraction in clinical notes.
    Patrick JD; Nguyen DH; Wang Y; Li M
    J Am Med Inform Assoc; 2011; 18(5):574-9. PubMed ID: 21737844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.