These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 21709336)

  • 21. Controlling the motion of interacting particles: homogeneous systems and binary mixtures.
    Savel'ev S; Nori F
    Chaos; 2005 Jun; 15(2):26112. PubMed ID: 16035914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measuring colloidal interactions with confocal microscopy.
    Royall CP; Louis AA; Tanaka H
    J Chem Phys; 2007 Jul; 127(4):044507. PubMed ID: 17672707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles.
    Klymko K; Geissler PL; Whitelam S
    Phys Rev E; 2016 Aug; 94(2-1):022608. PubMed ID: 27627361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-assembly in binary mixtures of dipolar colloids: molecular dynamics simulations.
    Goyal A; Hall CK; Velev OD
    J Chem Phys; 2010 Aug; 133(6):064511. PubMed ID: 20707579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Should "lane formation" occur systematically in driven liquids and colloids?
    Delhommelle J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016705. PubMed ID: 15697762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structures of two-dimensional binary mixtures of dipolar colloids in tilted external magnetic fields.
    Chremos A; Likos CN
    J Phys Chem B; 2009 Sep; 113(36):12316-25. PubMed ID: 19663484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of colloidal fouling by coupling a dynamically updating velocity profile and electric field interactions with Force Bias Monte Carlo methods for membrane filtration.
    Boyle PM; Houchens BC; Kim AS
    J Colloid Interface Sci; 2013 Jun; 399():77-86. PubMed ID: 23540433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions.
    Matsuoka Y; Fukasawa T; Higashitani K; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051403. PubMed ID: 23214780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions.
    Tomilov A; Videcoq A; Chartier T; Ala-Nissilä T; Vattulainen I
    J Chem Phys; 2012 Jul; 137(1):014503. PubMed ID: 22779661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Field-induced layer formation in dipolar nanofilms.
    Jordanovic J; Klapp SH
    Phys Rev Lett; 2008 Jul; 101(3):038302. PubMed ID: 18764302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colloidal surface interactions and membrane fouling: investigations at pore scale.
    Bacchin P; Marty A; Duru P; Meireles M; Aimar P
    Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffusion of spherical particles in microcavities.
    Imperio A; Padding JT; Briels WJ
    J Chem Phys; 2011 Apr; 134(15):154904. PubMed ID: 21513415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer simulations of colloidal transport on a patterned magnetic substrate.
    Fortini A; Schmidt M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041411. PubMed ID: 21599162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sedimentation of aggregating colloids.
    Whitmer JK; Luijten E
    J Chem Phys; 2011 Jan; 134(3):034510. PubMed ID: 21261371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screening of hydrodynamic interactions in Brownian rod suspensions.
    Pryamitsyn V; Ganesan V
    J Chem Phys; 2008 Apr; 128(13):134901. PubMed ID: 18397101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of surface structure evolution in colloidal adsorption: charge patterning and polydispersity.
    Brewer DD; Tsapatsis M; Kumar S
    J Chem Phys; 2010 Jul; 133(3):034709. PubMed ID: 20649352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer simulation on the collision-sticking dynamics of two colloidal particles in an optical trap.
    Xu S; Sun Z
    J Chem Phys; 2007 Apr; 126(14):144903. PubMed ID: 17444739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Key role of hydrodynamic interactions in colloidal gelation.
    Furukawa A; Tanaka H
    Phys Rev Lett; 2010 Jun; 104(24):245702. PubMed ID: 20867312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of vesicle self-assembly and dissolution.
    Noguchi H; Gompper G
    J Chem Phys; 2006 Oct; 125(16):164908. PubMed ID: 17092140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.