BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21709394)

  • 1. A flexible tool for calculating the consequences of a hypothetical nuclear accident.
    Tabet E
    Ann Ist Super Sanita; 2011; 47(2):229-35. PubMed ID: 21709394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Personal computer interactive algorithm for estimating radiologic contamination and doses after a nuclear accident in Europe].
    Tabet E
    Ann Ist Super Sanita; 2001; 37(2):207-12. PubMed ID: 11758278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of environmental public exposure from a hypothetical nuclear accident for Unit-1 Bushehr nuclear power plant.
    Sohrabi M; Ghasemi M; Amrollahi R; Khamooshi C; Parsouzi Z
    Radiat Environ Biophys; 2013 May; 52(2):235-44. PubMed ID: 23358597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term consequences for Northern Norway of a hypothetical release from the Kola nuclear power plant.
    Howard BJ; Wright SM; Salbu B; Skuterud KL; Hove K; Loe R
    Sci Total Environ; 2004 Jul; 327(1-3):53-68. PubMed ID: 15172571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational tool based on voxel geometry for dose reconstruction of a radiological accident due to external exposure.
    Lemosquet A; Clairand I; de Carlan L; Franck D; Aubineau-Lanièce I; Bottollier-Depois JF
    Radiat Prot Dosimetry; 2004; 110(1-4):449-54. PubMed ID: 15353689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fast and simple approach for the estimation of a radiological source from localised measurements after the explosion of a radiological dispersal device.
    Urso L; Kaiser JC; Woda C; Helebrant J; Hulka J; Kuca P; Prouza Z
    Radiat Prot Dosimetry; 2014 Mar; 158(4):453-60. PubMed ID: 24214910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima Nuclear Power Plant.
    Leelossy A; Mészáros R; Lagzi I
    J Environ Radioact; 2011 Dec; 102(12):1117-21. PubMed ID: 21856053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma-Ray Dose From an Overhead Plume.
    McNaughton MW; Gillis JM; Ruedig E; Whicker JJ; Fuehne DP
    Health Phys; 2017 May; 112(5):445-450. PubMed ID: 28350698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protecting people against radiation exposure in the event of a radiological attack. A report of The International Commission on Radiological Protection.
    Valentin J;
    Ann ICRP; 2005; 35(1):1-110, iii-iv. PubMed ID: 16164984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GIS-based SafeAirView software for the concentration assessment of radioactive pollutants after an accidental release.
    Canepa E; D'Alberti F; D'Amati F; Triacchini G
    Sci Total Environ; 2007 Feb; 373(1):32-42. PubMed ID: 17169408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Questionnaire- and measurement-based individual thyroid doses in Ukraine resulting from the Chornobyl nuclear reactor accident.
    Likhtarev I; Bouville A; Kovgan L; Luckyanov N; Voillequé P; Chepurny M
    Radiat Res; 2006 Jul; 166(1 Pt 2):271-86. PubMed ID: 16808613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. POSEIDON/RODOS models for radiological assessment of marine environment after accidental releases: application to coastal areas of the Baltic, Black and North Seas.
    Lepicard S; Heling R; Maderich V
    J Environ Radioact; 2004; 72(1-2):153-61. PubMed ID: 15162867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of total effective dose equivalent and collective dose in the event of a LOCA in Bushehr Nuclear Power Plant.
    Raisali G; Davilu H; Haghighishad A; Khodadadi R; Sabet M
    Radiat Prot Dosimetry; 2006; 121(4):382-90. PubMed ID: 16785243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. INITIAL EVALUATION OF INDIVIDUAL DOSES IN THE EARLY PHASE OF A NUCLEAR REACTOR ACCIDENT BASED ON IN-VIVO MONITORING DATA AND SIMULATED RADIOLOGICAL CONSEQUENCES.
    Challeton-de Vathaire C; Quentric E; Didier D; Blanchardon E; Davesne E; Rannou A; Agarande M; Renaud-Salis V; Franck D
    Radiat Prot Dosimetry; 2019 Nov; 185(1):96-108. PubMed ID: 30590730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of environmental radioactive surface contamination from a hypothetical nuclear research reactor accident.
    Xoubi N
    Heliyon; 2020 Sep; 6(9):e04968. PubMed ID: 32995636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doses received while crossing a plume of radioactive material released during an accident at a nuclear power plant.
    Scherpelz RI; Desrosiers AE
    Health Phys; 1982 Aug; 43(2):187-203. PubMed ID: 7129874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A long shadow over Fukushima.
    Smith J
    Nature; 2011 Apr; 472(7341):7. PubMed ID: 21475152
    [No Abstract]   [Full Text] [Related]  

  • 19. Process-oriented dose assessment model for 14C due to releases during normal operation of a nuclear power plant.
    Aquilonius K; Hallberg B
    J Environ Radioact; 2005; 82(3):267-83. PubMed ID: 15885375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Organization of the nuclear emergency plan].
    Van Bladel L; Vandecasteele C
    Verh K Acad Geneeskd Belg; 2005; 67(5-6):337-40. PubMed ID: 16408829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.